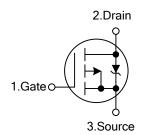


UNISONIC TECHNOLOGIES CO., LTD

UTT16P10 Preliminary Power MOSFET

100V, 16A P-CHANNEL POWER MOSFET

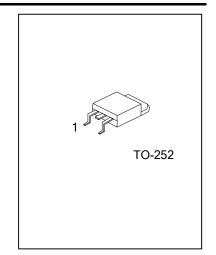

■ DESCRIPTION

The UTC **UTT16P10** is a P-channel power MOSFET using UTC's advanced technology to provide the customers with high switching speed, cost-effectiveness and a minimum on-state resistance. It can also withstand high energy in the avalanche.

- * $R_{DS(ON)}$ <0.21 Ω @ V_{GS} =-10V, I_{D} =-16A
- * High Switching Speed

■ SYMBOL

ORDERING INFORMATION


Note: Pin Assignment: G: Gate

Ordering Number		Daaltana	Pin Assignment			Dealine	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UTT16P10L-TN3-R	UTT16P10G-TN3-R	TO-252	G	D	S	Tape Reel	
UTT16P10L-TN3-T	UTT16P10G-TN3-T	TO-252	G	D	S	Tube	

S: Source

D: Drain

UTT16P10L-TN3-R
(1)Packing Type
(1) R: Tape Reel, T: Tube
(2)Package Type
(3)Lead Free
(3) G: Halogen Free, L: Lead Free

■ ABSOLUTE MAXIMUM RATINGS (T_J=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	-100	V
Gate-Source Voltage		V_{GSS}	±20	V
Drain Current	Continuous, T _C =25°C		-16	Α
	V _{GSS} @-10V T _C =100°C	I _D	-9.8	Α
	Pulsed (Note 2)	I_{DM}	-64	Α
Avalanche Current (Note 2)		I _{AR}	-16	Α
Avalanche Energy	Repetitive (Note 3)	E _{AS}	345	mJ
	Single Pulsed (Note 2)	E _{AR}	15	mJ
Peak Diode Recovery dv/dt		dv/dt	-5.5	V/ns
Power Dissipation (T _C =25°C)		P_{D}	150	W
Junction Temperature		TJ	-55~+150	°C
Storage Temperature		T _{STG}	-55~+150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Repetitive rating; pulse width limited by max. junction temperature.
- 3. V_{DD} =-25V, starting T_J =25°C, L=2.7mH, R_G =25 Ω , I_{AS} =-16A.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Case	θ_{JC}	1.0	°C/W

■ ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise specified)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
OFF CHARACTERISTICS								
Drain-Source Breakdown Voltage		BV _{DSS}	I _D =-250μA, V _{GS} =0V	-100			V	
Breakdown Voltage Temperature Coefficient		$\Delta BV_{DSS}/\Delta T_{J}$	Reference to 25°C, I _D =-1mA		-0.1		V/°C	
Drain-Source Leakage Current		I _{DSS}	V _{DS} =-100V, V _{GS} =0V,			-25	μΑ	
			V _{DS} =-80V, V _{GS} =0V, T _J =150°C			-100	μΑ	
Gate- Source Leakage Current	Forward	I _{GSS}	V _{GS} =+20V			+100	nΑ	
	Reverse	IGSS	V _{GS} =-20V			-100	nA	
ON CHARACTERISTICS	ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_D=-250\mu A$			-3.0	V	
Static Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} =-10V, I _D =-16A (Note 2)			0.21	Ω	
DYNAMIC PARAMETERS								
Input Capacitance		C _{ISS}			1180	1900	pF	
Output Capacitance		Coss	V_{DS} =-25V, V_{GS} =0V, f=1.0MHz		250		pF	
Reverse Transfer Capacitance		C _{RSS}			75		pF	
SWITCHING PARAMETERS								
Total Gate Charge		Q_{G}			37	60	nC	
Gate to Source Charge		Q_GS	V _{DS} =-80V, V _{GS} =-10V, I _D =-16A,		5		nC	
Gate to Drain ("Miller") Charge		Q_{GD}			15		nC	
Turn-ON Delay Time		t _{D(ON)}			11		ns	
Rise Time		t _R	V_{DD} =-50V, I_{D} =-16A, R_{G} =9.1 Ω ,		25		ns	
Turn-OFF Delay Time		t _{D(OFF)}	$R_D = 2.4\Omega$		56		ns	
Fall-Time		t _F			36		ns	
SOURCE- DRAIN DIODE RATIN	GS AND CH	ARACTERIS	TICS			•		
Maximum Body-Diode Continuous Current		Is				-16	Α	
Maximum Body-Diode Pulsed Cu	rrent	I _{SM}	(Note 1)			-64	Α	
Drain-Source Diode Forward Volt	age	V_{SD}	I _S =-16A, V _{GS} =0V (Note 2)			-1.3	V	

Notes: 1. Repetitive rating; pulse width limited by max. junction temperature.

2. Pulse width≤300µs; duty cycle≤2%.

■ TEST CIRCUITS AND WAVEFORMS

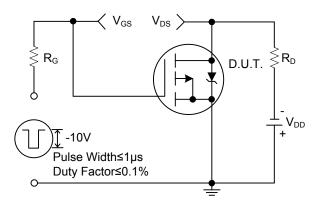


Fig. 1 Switching Time Test Circuit

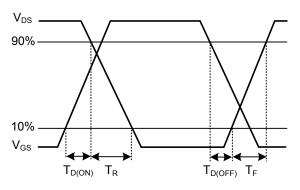


Fig. 2 Switching Time Waveforms

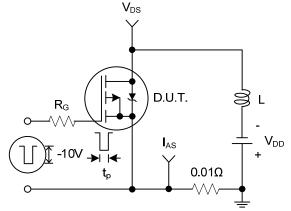


Fig. 3 Unclampled Inductive Test Circuit

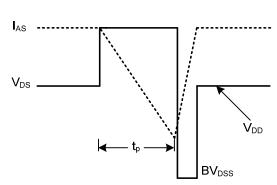


Fig. 4 Unclampled Inductive Waveforms

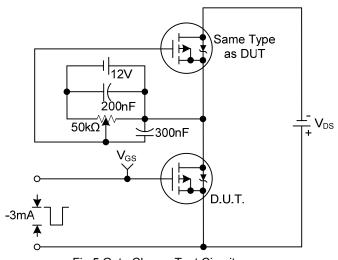


Fig.5 Gate Charge Test Circuit

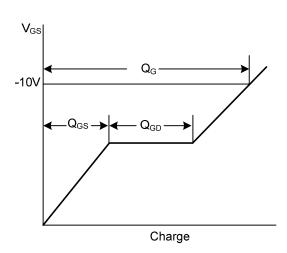


Fig. 6 Gate Charge Waveform

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.