ANALOG 36V, Micropower, Overvoltage Protection, DEVICES Rail-to-Rail I/O Amplifiers

Preliminary Technical Data

ADA4096-2

FEATURES

32V Input Overvoltage Protection above/below the supply rails Rail-to-Rail Input and Output Swing Low Power: 60 μ A/Amplifier typ Unity Gain Bandwidth: 800 kHz typ @ Vsy = ± 15 V 550 kHz typ @ Vsy = ± 5 V 475 kHz typ @ Vsy = ± 1.5 V Single-Supply Operation: 3 V to 30 V Low Offset Voltage: 250 μ V max High Open-Loop Gain: 120 dB typ Unity-Gain Stable No Phase Reversal

APPLICATIONS

Battery Monitoring Sensor Conditioners Portable Power Supply Control Portable Instrumentation

GENERAL DESCRIPTION

The ADA4096 family of operational amplifier features micropower operation and rail-to-rail input and output ranges. The extremely low power requirements and guaranteed operation from 3 V to 30 V (\pm 1.5 V to \pm 15 V) make these amplifiers perfectly suited to monitor battery usage and to control battery charging. Their dynamic performance, including 27 nV/ \sqrt{Hz} voltage noise density, recommends them for battery-powered audio applications. The amplifier can drive capacitive loads up to 200 pF without oscillation.

The ADA4096 has overvoltage protection inputs that allow the voltage input to exceed 32V above and below the supply rails without damage, glitching, or phase reversal, making the device ideal for robust industrial applications.

The ADA4096 are specified over the extended industrial $(-40^{\circ}\text{C to }+125^{\circ}\text{C})$ temperature range. The dual ADA4096-2 is available in 8-lead LFCSP (2x2) and 8-lead MSOP packages.

Rev. PrB

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

PIN CONFIGURATIONS

Figure 1. 8-LeadLFCSP (2x2) Figure 2. 8-Lead MSOP (RM)

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS – $V_s = \pm 15V$

 V_{S} = ±15 V, V_{CM} = Vs/2, T_{A} = 25°C, unless otherwise specified.

Table 1.

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos			35	250	μV
		-40°C < T _A < +125°C			400	uV
Input Bias Current	Ів			±3	±10	nA
		–40°C < T₄ < +125°C			±15	nA
Input Offset Current	los			+0.1	+1.5	nA
		–40°C < T₄ < +125°C			±3	nA
Input Voltage Range		-40°C < T₄ < +125°C	-15		+15	v
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -15 V \text{ to } +15 V$		95		dB
	_	-40°C < T _A < +125°C	75			dB
		$V_{CM} = -13 V \text{ to } +13 V$	95	107		dB
		$-40^{\circ}C < T_A < +125^{\circ}C$	89			dB
Large Signal Voltage Gain	Avo	-14.7 < V _{OUT} < +14.7,R _L = 10kΩ	110	120		dB
		-40°C < T _A < +125°C	105			dB
		$-11 < V_{OUT} < +11, R_L = 2k\Omega$	100	112		dB
		$-40^{\circ}C < T_A < +125^{\circ}C$	90			dB
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$-40^{\circ}C < T_A < +125^{\circ}C$		1		μV/°C
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{он}	$R_L = 10 \text{ k}\Omega \text{ to GND}$	14.93	14.94		V
		$-40^{\circ}C < T_A < +125^{\circ}C$	14.9			V
		$R_L = 2 k\Omega$ to GND	14.10	14.30		V
		-40°C < T _A < +125°C	12.00			V
Output Voltage Low	V _{OL}	$R_L = 10 \text{ k}\Omega \text{ to GND}$		-14.96	-14.80	V
		-40°C < T _A < +125°C			-14.75	V
		$R_L = 2 k\Omega$ to GND		-14.75	-14.65	V
		$-40^{\circ}C < T_A < +125^{\circ}C$			-14.0	V
Short Circuit Limit	I _{sc}			±10		mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_S = 3 V$ to $36 V$	100			dB
		-40°C to +125°C	90			dB
Supply Current/Amplifier	lsy	$V_0 = V_s / 2$		60	75	μA
		$-40^{\circ}C < T_A < +125^{\circ}C$			100	μA
DYNAMIC PERFORMANCE						
Slew Rate	SR			0.4		V/µs
Unity Gain Crossover	UGC	$V_{p} = 5mV$; $R_{L} = 10k$; $A_{v} = 1$		800		kHz
Gain Bandwidth Product	GBP	$V_{p} = 5mV$; $R_{L} = 10k$; $A_{v} = 40dB$		800		kHz
-3dB Small Signal Bandwidth						kHz
Phase Margin	ΦΜ			64		Degrees
NOISE PERFORMANCE						
Peak-to-Peak Noise	en p-p	f = 0.1 to 10 Hz		0.4		μV p-p
Voltage Noise Density	en	f = 1 kHz		27		nV/√Hz
Current Noise Density	İn	f = 1 kHz		TBD		fA/√Hz

ELECTRICAL CHARACTERISTICS – $V_s = \pm 5V$

 $V_{\text{S}}=\pm5$ V, V_{CM} = Vs/2, T_{A} = 25°C, unless otherwise specified.

Table 2.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos			35	250	μV
		−40°C < T _A < +125°C			400	μV
Input Bias Current	IB			±10	±12	nA
	-	–40°C < T _A < +125°C			±19	nA
Input Offset Current	los			±1.5	±2	nA
		–40°C < T _A < +125°C			±3	nA
Input Voltage Range		–40°C < T _A < +125°C	-5		+5	v
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -5V \text{ to } +5V$	74	86		dB
-		–40°C < T _A < +125°C	68			dB
		$V_{CM} = -3V \text{ to } +3V$	91	103		dB
		$-40^{\circ}C < T_A < +125^{\circ}C$	85			dB
Large Signal Voltage Gain	Avo	$-4.8 < V_{OUT} < +4.8$, $B_1 = 10 kO$	103	111		dB
5 5 5		$-40^{\circ}C < T_{A} < +125^{\circ}C$	99			dB
		$-4.7 < V_{OUT} < +4.7$, $B_1 = 2k\Omega$	95	103		dB
		-40°C < T _A < +125°C	88			dB
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$-40^{\circ}C < T_A < +125^{\circ}C$		1		μV/°C
OUTPUT CHARACTERISTICS						
Output Voltage High	Vон	$R_L = 10 \text{ k}\Omega \text{ to GND}$	4.96	4.97		V
		$-40^{\circ}C < T_A < +125^{\circ}C$	4.95			V
		$R_L = 2 k\Omega$ to GND	4.80	4.90		V
		$-40^{\circ}C < T_A < +125^{\circ}C$	4.70			V
Output Voltage Low	Vol	$R_L = 10 \ k\Omega$ to GND		-4.98	-4.97	V
		$-40^{\circ}C < T_A < +125^{\circ}C$			-4.95	V
		$R_L = 2 k\Omega$ to GND		-4.90	-4.80	V
		$-40^{\circ}C < T_A < +125^{\circ}C$			-4.75	V
Short Circuit Limit	lsc			±10		mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{\rm S} = 3 V \text{ to } 36 V$	100			dB
		-40°C to +125°C	90			dB
Supply Current/Amplifier	l _{sy}	$V_0 = V_s / 2$		47	55	μΑ
		$-40^{\circ}C < T_A < +125^{\circ}C$			75	μA
DYNAMIC PERFORMANCE						
Slew Rate	SR			0.3		V/µs
Unity Gain Crossover	UGC	$V_{p} = 5mV$; $R_{L} = 10k$; $A_{v} = 1$		550		kHz
Gain Bandwidth Product	GBP	$V_{p} = 5mV$; $R_{L} = 10k$; $A_{v} = 40dB$		550		kHz
-3dB Small Signal Bandwidth						
Phase Margin	ΦM			60		Degrees
NOISE PERFORMANCE						
Peak-to-Peak Noise	en p-p	f = 0.1 to 10 Hz		TBD		μV р-р
Voltage Noise Density	en	f = 1 kHz		TBD		nV/√Hz
Current Noise Density	İn	f = 1 kHz		TBD		fA/√Hz

ELECTRICAL CHARACTERISTICS – VS = $\pm 1.5V$

 $V_{\text{S}}=\pm 1.5$ V, $V_{\text{CM}}=$ Vs/2, $T_{\text{A}}=25^{\circ}\text{C},$ unless otherwise specified.

Table 3.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos			35	250	μV
		°0C < T _A < +125°C			350	μV
		$-40^{\circ}C < T_A < +125^{\circ}C$			900	μV
						1
Input Bias Current	IB			±10	±13	nA
		$-40^{\circ}C < T_A < +125^{\circ}C$			±16	nA
Input Offset Current	los			±0.1	±1.5	nA
		$-40^{\circ}C < T_A < +125^{\circ}C$			±3	nA
Input Voltage Range		$-40^{\circ}C < T_A < +125^{\circ}C$	-1.5		+1.5	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = 0 V \text{ to } \pm 1.5 V$	63	77		dB
		-40°C < T _A < +125°C	58			dB
Large Signal Voltage Gain	A _{VO}	$-1.4 < V_{OUT} < +1.4$, $R_L = 10 k\Omega$	92	94		dB
		-40°C < T _A < +125°C	84			dB
		-1.3 < Vοιπ < +1.3. Rι = 2kΩ	88	92		dB
		$-40^{\circ}C < T_{A} < +125^{\circ}C$	77			dB
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	-40°C < T _A < +125°C		1		μV/°C
OUTPUT CHARACTERISTICS						
Output Voltage High	VOH	$R_i = 10 k\Omega$ to GND	1.48	1.49		v
		$-40^{\circ}C < T_{A} < +125^{\circ}C$	1.45			v
		$B_{\rm I} = 2 \mathrm{kO}$ to GND	1.45	1.46		v
		$-40^{\circ}C < T_{A} < +125^{\circ}C$	1.40			v
Output Voltage Low	Vol	$B_{\rm I} = 10 \text{ kO to GND}$		-1 49	-1 48	v
output foliage 2011	• OL	$-40^{\circ}C < T_{A} < +125^{\circ}C$			-1 45	v
		$B_1 = 2 k\Omega to GND$		-1 48	-1 47	v
		$-40^{\circ}C < T_{A} < +125^{\circ}C$		1.10	-1.40	v
Short Circuit Limit	150			+10	1110	mA
	130			±10		
Power Supply Rejection Batio	PSRR	$V_{c} = 3 V to 36 V$	100			dB
rower supply hejection hatto	1 5111	-40° C to $\pm 125^{\circ}$ C	90			dB
Supply Current/Amplifier	lo.	$V_0 = V_c / 2$	50	40		
Supply current/Ampliner	151	$-40^{\circ}C < T_{1} < \pm 125^{\circ}C$		-10	80	μΑ
					00	μΛ
Slow Pato	CD			0.25		M/us
Jiew Rate		$V_{1} = 5mV_{1}B_{1} = 10k_{1}A_{1} = 1$		0.25		v/µs
Gain Bandwidth Product	GBP	$V_{p-} = 5mV$, $R_{L} = 10k$, $A_{v} = 1$		475		
-3dB Small Signal Bandwidth	GDI	$v_{\rm P}$ = 5mV, $n_{\rm E}$ = 10K, $A_{\rm V}$ = 400B		ч/ J		kHz
Phase Margin	фм			60		Degrees
						Degices
NOISE PERFORMANCE		$f = 0.1 \pm 0.10$ Hz		רסד		
redk-lu-redk NUISe	en p-p					μν ρ-ρ
	en :	$I = I K \square Z$				
Current Noise Density	In			IDU		

ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	Rating
Supply Voltage	36 V
Input Voltage	
Operating Conditions	V⁻ ≤Vin≤ V ⁺
Overvoltage Condition ¹	V ⁻ – 32V ≤Vin≤ V ⁺ + 32V
Differential Input Voltage	±V _{sy}
Output Short-Circuit Duration to Gnd	Indefinite
Storage Temperature Range	–65°C to +150°C
Operating Temperature Range	–40°C to +125°C
Junction Temperature Range	–65°C to +150°C
Lead Temperature (Soldering, 60 sec)	300°C

¹ Performance specifications are not guaranteed during overvoltage conditions.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 5. Thermal Resistance

Package Type	Αιθ	οıθ	Unit

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Rev. PrB | Page 5 of 5