
Current Transducer LT 1000-SI

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

$I_{PN} = 1000 A$

Electrical data

I _{PN} I _P R _M	Primary nominal r.m.s. current Primary current, measuring range Measuring resistance		1000 0 ± 1 R _{M min}	500 R _{M max}	A A
	with ± 15 V	@ ± 1000 A _{max} @ ± 1500 A _{max}	0	25 5	$\Omega \ \Omega$
I _{sn} K _n	Secondary nominal r.m.s. current Conversion ratio		200 1 : 500	00 🍊	m A
V _c	Supply voltage (± 5 %)		± 15	0,	V
I _C	Current consumption		25 +		mΑ
\mathbf{V}_{d}	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		6		kV

Accuracy - Dynamic performance data

X _G	Overall accuracy $@$ I_{PN} , $T_A = 25^{\circ}C$ Linearity error	± 0.3 < 0.1		% %
I _о I _{от}	Offset current @ $I_p = 0$, $T_A = 25$ °C Thermal drift of I_O 0°C + 70°C		Max ± 0.4 ± 0.3	m A m A
t _, di/dt f	Response time 1) @ 90 % or 1 _{PN} di/dt accurately followed Frequency bandwidth (-1 dB)	< 1 > 50 DC 1	00	μs Α/μs kHz

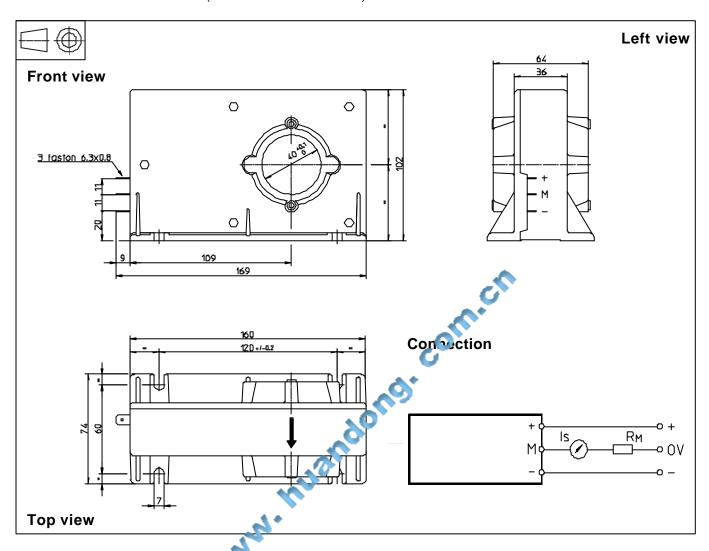
General data

T_A	Ambient operating temperature	0 + 70	°C
T _s	Ambient storage temperature	- 25 + 85	°C
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 70°C	40	Ω
m	Mass	700	g
	Standards	EN 50178 (97.10.01)	

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Advantages


- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Note: 1) With a di/dt of 100 A/µs.

Dimensions LT 1000-SI (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening

Recommended fastening torque

- Primary through-hole
- Connection of secondary
- $\pm 0.5 \, \text{mm}$
- 4 slots Ø 7 mm
- 4 M6 steel screws
- $4.7\ \mbox{Nm}$ or $3.47\ \mbox{Lb-}$ Ft
- \varnothing 40 mm
- Faston 6.3 x 0.8 mm

Remarks

- \bullet ${\bf I}_{_{\rm S}}$ is positive when ${\bf I}_{_{\rm P}}$ flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.