FAIRCHILD

SEMICONDUCTOR®

ISL9R460PF2

4A, 600V Stealth™ Diode

General Description

Formerly developmental type TA49408.

The ISL9R460PF2 is a StealthTM diode optimized for low loss performance in high frequency hard switched applications. The StealthTM family exhibits low reverse recovery current (I_{RRM}) and exceptionally soft recovery under typical operating conditions.

This device is intended for use as a free wheeling or boost diode in power supplies and other power switching applications. The low I_{REM} and short t_a phase reduce loss in switching transistors. The soft recovery minimizes ringing, expanding the range of conditions under which the diode may be operated without the use of additional snubber circuitry. Consider using the StealthTM diode with an SMPS IGBT to provide the most efficient and highest power density design at lower cost.

Features

- Soft Recovery t_b / t_a > 3
 Fast Recovery t_{rr} < 20ns

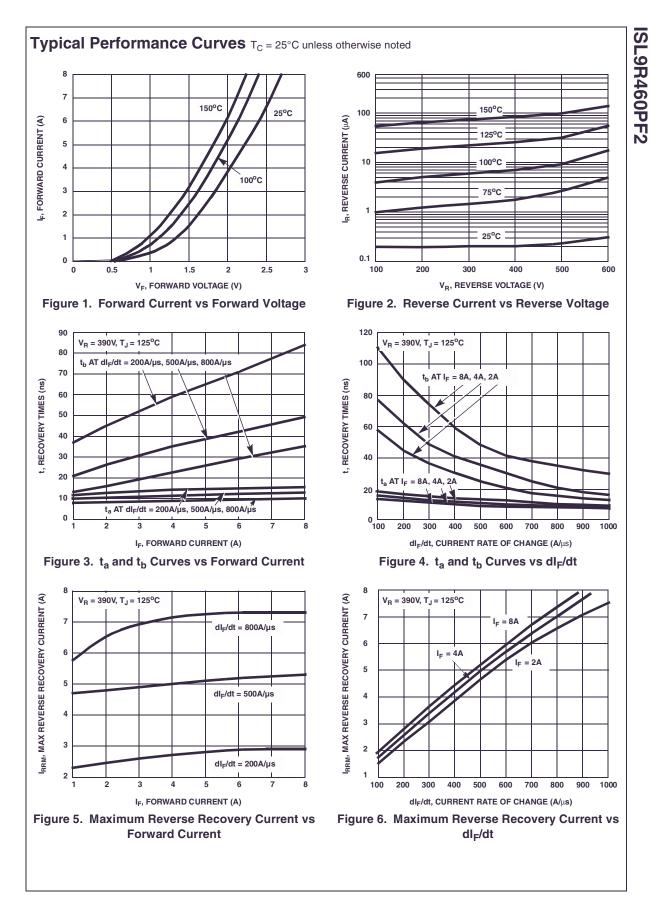
- Avalanche Energy Rated

Applications

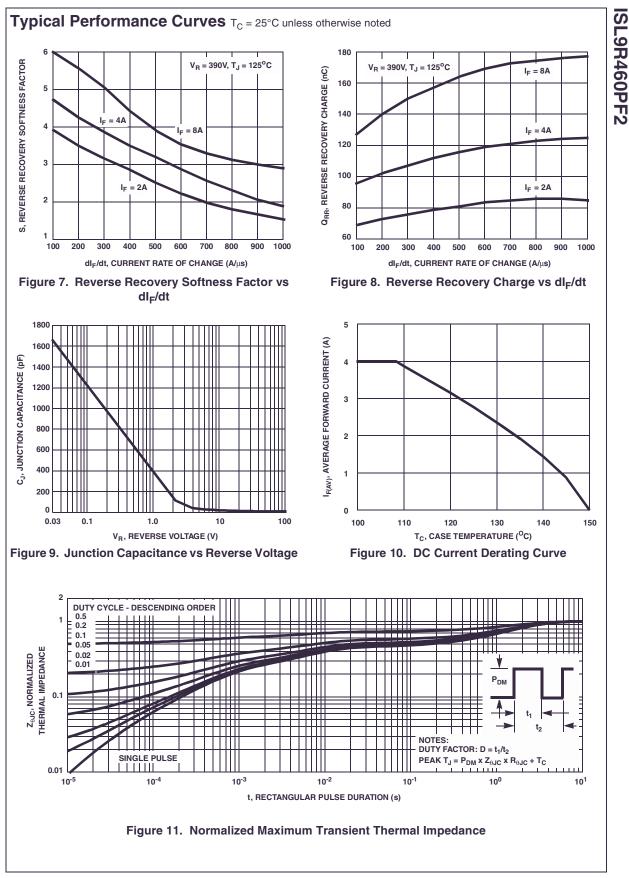
- Switch Mode Power Supplies
- Hard Switched PFC Boost Diode
- UPS Free Wheeling Diode
- Motor Drive FWD
- SMPS FWD
- Snubber Diode

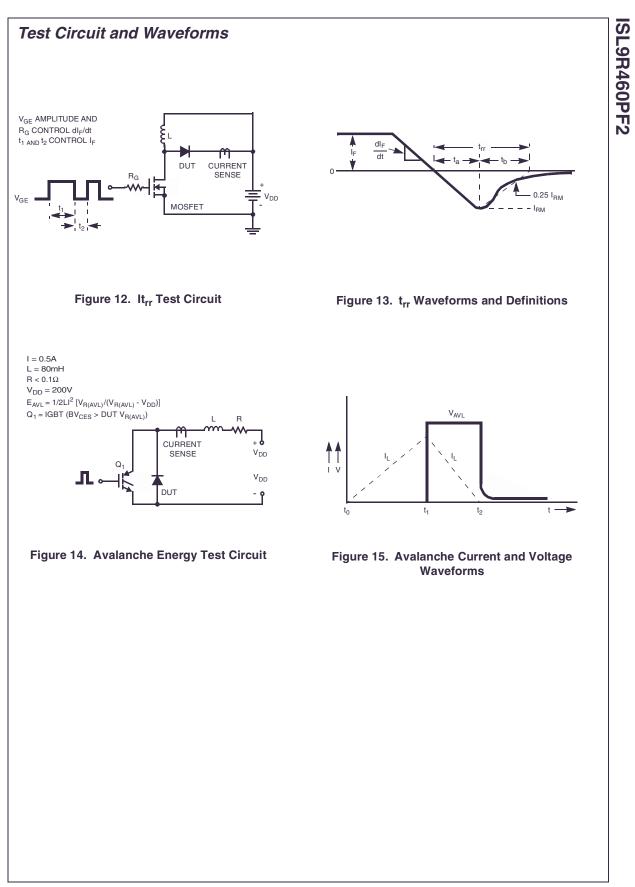
Device Maximum Ratings T_C= 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
V _{RRM}	Peak Repetitive Reverse Voltage	600	V
V _{RWM}	Working Peak Reverse Voltage	600	V
V _R	DC Blocking Voltage	600	V
I _{F(AV)}	Average Rectified Forward Current (T _C = 108°C)	4	Α
I _{FRM}	Repetitive Peak Surge Current (20kHz Square Wave)	8	Α
I _{FSM}	Nonrepetitive Peak Surge Current (Halfwave 1 Phase 60Hz)	50	Α
PD	Power Dissipation	22	W
E _{AVL}	Avalanche Energy (0.5A, 80mH)	10	mJ
Γ _J , T _{STG}	Operating and Storage Temperature Range	-55 to 150	°C
TL	Maximum Temperature for Soldering		
T _{PKG}	Leads at 0.063in (1.6mm) from Case for 10s	300	°C
	Package Body for 10s, See Techbrief TB334	260	°C

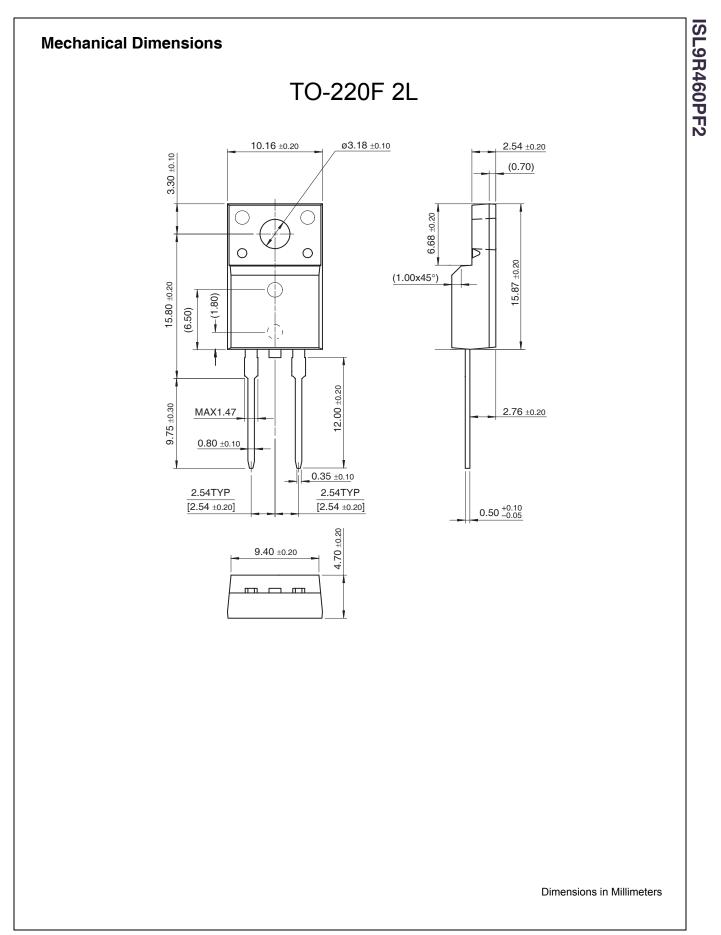


ISL9R460PF2


April 2009


Device Marking Device		Package Tape Width		h		Quan	tity	
R460PF2		ISL9R460PF2	TO-220F	N/A			50 U	nits
_								
ectri	cal Char	acteristics T _C = 25°C u	Inless otherwise	noted				
ymbol		Parameter	Test	Conditions	Min	Тур	Мах	Units
f State	e Characte	eristics						
I _R	Instantaneous Reverse Current		V _R = 600V T _C =	$T_{\rm C} = 25^{\circ}{\rm C}$	-	-	100	μA
				T _C = 125°C	-	-	1.0	mA
State	e Characte	aristics						
V _F		ous Forward Voltage	$I_F = 4A$ $T_C = 25^{\circ}C$			2.0	2.4	V
۴F	motantario	ous i orward voltage	1F - 47	$T_{\rm C} = 125^{\circ}{\rm C}$	-	1.6	2.0	V
				10 - 120 0	<u> </u>	1.0	2.0	
	c Characte	eristics						
CJ	Junction Ca	apacitance	$V_{\rm R} = 10V, I_{\rm F} = 0$	AC	-	19	-	pF
itchir	ng Charac	teristics						
t _{rr}		ecovery Time	$I_{-} = 1A dI_{-}/dt$	- 1004/us V 30V	-	17	20	ns
۲r			$I_F = 1A, dI_F/dt = 100A/\mu s, V_R = 30V$ $I_F = 4A, dI_F/dt = 100A/\mu s, V_R = 30V$		-	19	22	ns
t _{rr}	Reverse Re	ecovery Time	$I_F = 4A$,		-	17	-	ns
I _{RRM}		Reverse Recovery Current	dI _F /dt = 200A/µ	S,	-	2.6	-	A
Q _{RR}		ecovered Charge	V _R = 390V, T _C	= 25°C	-	22	-	nC
t _{rr}		ecovery Time	I _F = 4A,		-	77	-	ns
S	Softness Fa	actor (t _b /t _a)	$\label{eq:relation} \begin{array}{c} dI_{F}/dt = 200A/\mu s, \\ V_{R} = 390V, \\ T_{C} = 125^{\circ}C \end{array}$		-	4.2	-	
I _{RRM}	Maximum F	Reverse Recovery Current			-	2.8	-	А
Q _{RR}	Reverse Re	ecovered Charge			-	100	-	nC
t _{rr}	Reverse Re	ecovery Time			-	54	-	ns
S	Softness Fa	actor (t _b /t _a)			-	3.5	-	
I _{RRM}	Maximum F	Reverse Recovery Current			-	4.3	-	A
Q _{RR}	-	ecovered Charge				110	-	nC
dl _M /dt	Maximum o	di/dt during t _b			-	500	-	A/µs
ermal	Characte	eristics						
R _{θJC}	Thermal Re	esistance Junction to Case	1		-	-	5.7	°C/W
R _{θJA}	Thermal Re	esistance Junction to Ambient	TO-220F		-	-	70	°C/W

ISL9R460PF2 Rev. A1



ISL9R460PF2 Rev. A1

ISL9R460PF2 Rev. A1

FAIRCHILD

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Auto-SPM™	F-PFS™	PowerTrench [®]	The Power Franchise [®]
Build it Now™	FRFET®	PowerXS™	
CorePLUS™	Global Power Resource SM	Programmable Active Droop™	puwer [®]
CorePOWER™	Green FPS™	QFET®	Inditicitise
CROSSVOLT™	Green FPS™ e-Series™	QS™	TinyBoost™
CTL™	G <i>m</i> ax™	Quiet Series™	TinyBuck™
Current Transfer Logic™	GTO™	RapidConfigure™	TinyLogic [®]
EcoSPARK [®]	IntelliMAX™		TINYOPTO™
EfficentMax™	ISOPLANAR™	Т	TinyPower™
EZSWITCH™ *	MegaBuck™	Saving our world, 1mW /W /kW at a time™	TinyPWM™
™*	MIČROCOUPLER™	SmartMax™	TinyWire™
E-2	MicroFET™	SMART START™	TriFault Detect™
F [®]	MicroPak™	SPM®	TRUECURRENT™*
+	MillerDrive™	STEALTH™	µSerDes™
Fairchild [®]	MotionMax™	SuperFET™	\mathcal{U}
Fairchild Semiconductor®	Motion-SPM™	SuperSOT™-3	Ser Des"
FACT Quiet Series™	OPTOLOGIC®	SuperSOT™-6	UHC®
FACT®	OPTOPLANAR®	SuperSOT™-8	Ultra FRFET™
FAST®	®	SupreMOS™	UniFET™
FastvCore™		SyncFET™	VCX™
FETBench™	PDP SPM™	Sync-Lock™	VisualMax™
FlashWriter [®] *	PDP SPM™ Power-SPM™	SYSTEM ®*	XS™
FPS™	FUWEI-SFINI "	GENERAL	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are 1 intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

cifications for product development. Specifications notice.
a; supplementary data will be published at a later rves the right to make changes at any time without
ons. Fairchild Semiconductor reserves the right to notice to improve the design.
on a product that is discontinued by Fairchild or reference information only.

SL9R460PF2