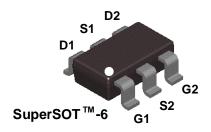


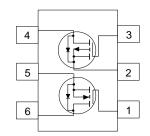
FDC6327C

Dual N & P-Channel 2.5V Specified PowerTrench™ MOSFET

General Description

These N & P-Channel 2.5V specified MOSFETs are produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize on-state resistance and yet maintain low gate charge for superior switching performance.


These devices have been designed to offer exceptional power dissipation in a very small footprint for applications where the bigger more expensive SO-8 and TSSOP-8 packages are impractical.


Applications

- DC/DC converter
- · Load switch
- Motor driving

Features

- N-Channel 2.7A, 20V. $R_{DS(on)} = 0.08\Omega$ @ $V_{GS} = 4.5V$ $R_{DS(on)} = 0.12\Omega$ @ $V_{GS} = 2.5V$
- P-Channel -1.6A, -20V.R_{DS(on)} = 0.17 Ω @ V_{GS} = -4.5V $R_{DS(on)} = 0.25\Omega$ @ V_{GS} = -2.5V
- Fast switching speed.
- · Low gate charge.
- \bullet High performance trench technology for extremely low $R_{\mbox{\tiny DS(ON)}}.$
- SuperSOT[™]-6 package: small footprint (72% smaller than SO-8); low profile (1mm thick).

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		N-Channel	P-Channel	Units
V _{DSS}	Drain-Source Voltage		20	-20	V
V _{GSS}	Gate-Source Voltage		<u>+</u> 8	<u>+</u> 8	V
I _D	Drain Current - Continuous	(Note 1a)	2.7	-1.9	Α
	- Pulsed		8	-8	1
P _D	Power Dissipation	(Note 1a)	0.96		W
		(Note 1b)	0.	.9	1
		(Note 1c)	0.	.7	1
T _J , T _{stg}	Operating and Storage Junction Tempera	ature Range	-55 to	+150	°C
Therma	I Characteristics	•			•

	<u> </u>			
$R_{\theta^{JA}}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	130	°C/W
R _{OJC}	Thermal Resistance, Junction-to-Case	(Note 1)	60	°C/W

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape Width	Quantity	
.327	FDC6327C	7"	8mm	3000	

Symbol	Parameter	Test Conditions	Type	Min	Тур	Max	Units
Off Cha	racteristics						
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$ $V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$	N-Ch P-Ch	20 -20			V
<u>A</u> BVnss ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \mu\text{A}$, Referenced to 25°C $I_D = -250 \mu\text{A}$, Referenced to 25°C	N-Ch P-Ch		12 -19		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 16 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}$	N-Ch P-Ch			1 -1	μΑ
I _{GSSF}	Gate-Body Leakage, Forward	$V_{GS} = 8 \text{ V}, V_{DS} = 0 \text{ V}$	All			100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	$V_{GS} = -8 \text{ V}, V_{DS} = 0 \text{ V}$	All			-100	nA
On Char	racteristics (Note 2) Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	N-Ch	0.4	0.9	1.5	V
	I	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	N-Ch	0.4	0.9	1.5	V
		$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	P-Ch	-0.4	-0.9	-1.5	
∆VGS(th)	Gate Threshold Voltage	$I_D = 250 \mu\text{A}$, Referenced to 25°C	N-Ch		-2.1		mV/∘C
ΔT_J	Temperature Coefficient	I _D = - 250 μA, Referenced to 25°C	P-Ch		2.3		
$R_{DS(on)}$	Static Drain-Source	$V_{GS} = 4.5 \text{ V}, I_D = 2.7 \text{ A}$	N-Ch		0.069	0.08	Ω
	On-Resistance	$V_{GS} = 4.5 \text{ V}, I_D = 2.7 \text{ A}, T_J = 125 ^{\circ}\text{C}$	N-Ch		0.094	0.13	
		$V_{GS} = 2.5 \text{ V}, I_D = 2.2 \text{ A}$	N-Ch P-Ch		0.093	0.12	
		$V_{GS} = -4.5 \text{ V}, I_D = -1.6 \text{ A}$ $V_{GS} = -4.5 \text{ V}, I_D = -1.6 \text{ A}, T_J = 125 ^{\circ}\text{C}$	P-Ch		0.141	0.17 0.27	
		$V_{GS} = -4.5 \text{ V}, I_D = -1.6 \text{ A}, I_J = 125^{\circ}\text{C}$ $V_{GS} = -2.5 \text{ V}, I_D = -1.3 \text{ A}$	P-Ch		0.205	0.27	
I _{D(on)}	On-State Drain Current	$V_{GS} = 2.5 \text{ V}, V_{DS} = 1.3 \text{ A}$	N-Ch	8	0.200	0.20	Α
·D(on)	Cir State Brain Garrent	$V_{GS} = -4.5 \text{ V}, V_{DS} = -5 \text{ V}$	P-Ch	-8			, ,
g _{FS}	Forward Transconductance	$V_{DS} = 5 \text{ V}, I_{D} = 2.7 \text{ A}$	N-Ch		7.7		S
		$V_{DS} = -5 \text{ V}, I_{D} = -1.9 \text{ A}$	P-Ch		4.5		
Dynami	<u>c Characteristics</u>						
C _{iss}	Input Capacitance	N-Channel $V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$	N-Ch P-Ch		325 315		pF
C _{oss}	Output Capacitance	P-Channel	N-Ch P-Ch		75 65		pF
C _{rss}	Reverse Transfer Capacitance	$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$	N-Ch P-Ch		35 24		pF

Electric	cal Characteristics	(continued)	T _A = 25°C unless otherwise noted
	·		

Symbol	Parameter	Test Conditions	Туре	Min	Typ	Max	Units
Switchir	Switching Characteristics (Note 2)						
t _{d(on)}	Turn-On Delay Time	N-Channel $V_{DD} = 10 \text{ V}, I_D = 1 \text{ A},$	N-Ch P-Ch		5 7	15 14	ns
t _r	Turn-On Rise Time	$V_{GS} = 4.5V$, $R_{GEN} = 6 \Omega$	N-Ch P-Ch		9 14	18 25	ns
$t_{d(off)}$	Turn-Off Delay Time	P-Channel $V_{DD} = -10 \text{ V}, I_D = -1 \text{ A},$	N-Ch P-Ch		12 14	22 25	ns
t _f	Turn-Off Fall Time	$V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$	N-Ch P-Ch		3	9	ns
Q _g	Total Gate Charge	N-Channel $V_{DS} = 10 \text{ V}, I_{D} = 2.7 \text{ A}, V_{GS} = 4.5 \text{V}$	N-Ch P-Ch		3.25 2.85	4.5 4.0	nC
Q_{gs}	Gate-Source Charge	P-Channel	N-Ch P-Ch		0.65 0.68		nC
Q_{gd}	Gate-Drain Charge	$V_{DS} = -10 \text{ V}, I_{D} = -1.9 \text{ A}, V_{GS} = -4.5 \text{V}$	N-Ch P-Ch		0.90 0.65		nC

Drain-Source Diode Characteristics and Maximum Ratings

Is	Maximum Continuous Drain-Source Dioc	e Forward Current	N-Ch		0.8	Α
			P-Ch		-0.8	
V_{SD}	Drain-Source Diode Forward $V_{GS} = 0 \text{ V}$,	I _S = 0.8 A (Note 2)	N-Ch	0.76	1.2	V
	Voltage $V_{GS} = 0 \text{ V}$	I _S = - 0.8 A (Note 2)	P-Ch	-0.79	-1.2	

Notes:

1: R_{BJA} is the sum of the junction-to-case and case-to-ambient resistance where the case thermal reference is defined as the solder mounting surface of the drain pins.

R_{BJC} is guaranteed by design while R_{BJA} is determined by the user's board design. Both devices are assumed to be operating and sharing the dissipated heat energy equally.

a) 130 °C/W when mounted on a 0.125 in² pad of 2 oz. copper.

b) 140 °C/W when mounted on a 0.005 in² pad of 2 oz. copper.

c) 180 °C/W when mounted on a 0.0015 in² pad of 2 oz. copper.

Scale 1: 1 on letter size paper

2: Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%

Typical Characteristics: N-Channel

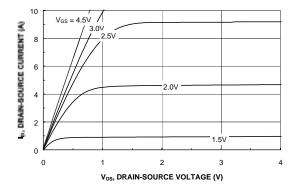


Figure 1. On-Region Characteristics.

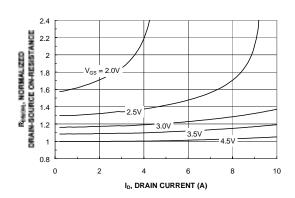


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

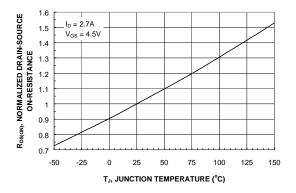


Figure 3. On-Resistance Variation with Temperature.

Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

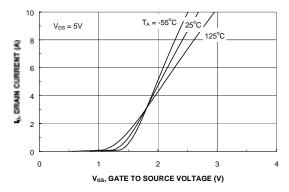


Figure 5. Transfer Characteristics.

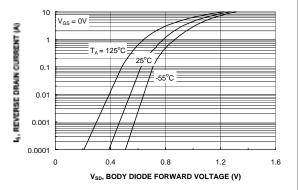
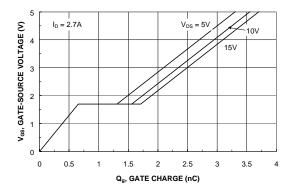



Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics: N-Channel (continued)

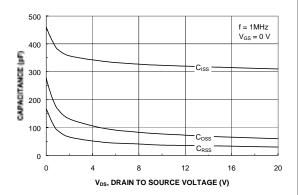
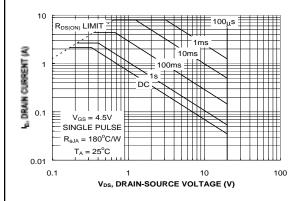



Figure 7. Gate-Charge Characteristics.

Figure 8. Capacitance Characteristics.

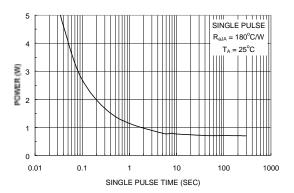
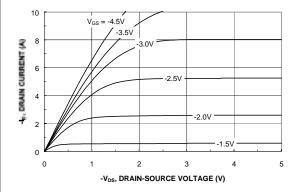
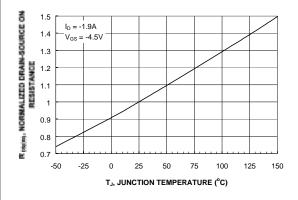



Figure 9. Maximum Safe Operating Area.

Figure 10. Single Pulse Maximum Power Dissipation.


Typical Characteristics: P-Channel

2.4 2.2 V_{GS} = -2.0V 2 1.8 1.6 1.4 1.2 1 0.8 0 2 4 6 8 10 -1_D, DIRAIN CURRENT (A)

Figure 11. On-Region Characteristics.

Figure 12. On-Resistance Variation with Drain Current and Gate Voltage.

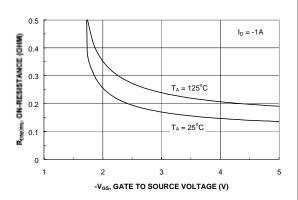
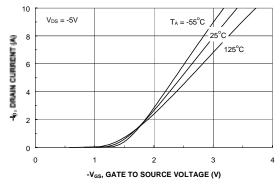



Figure 13. On-Resistance Variation with Temperature.

Figure 14. On-Resistance Variation with Gate-to-Source Voltage.

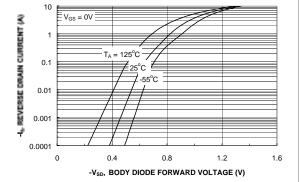
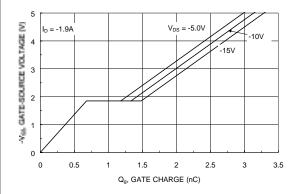



Figure 15. Transfer Characteristics.

Figure 16. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics: P-Channel (continued)

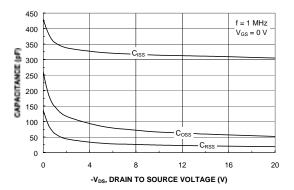
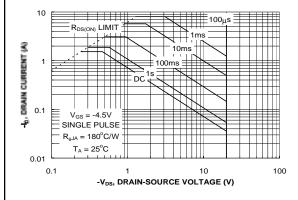



Figure 17. Gate-Charge Characteristics.

Figure 18. Capacitance Characteristics.

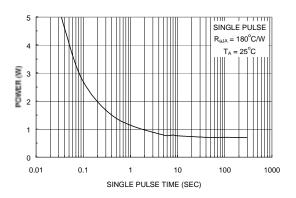


Figure 19. Maximum Safe Operating Area.

Figure 20. Single Pulse Maximum Power Dissipation.

Typical Characteristics: N & P-Channel (continued)

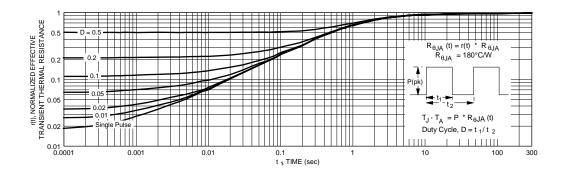


Figure 21. Transient Thermal Response Curve.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEX™ FASTr™ QFET™ VCX™

Bottomless™ GlobalOptoisolator™ QS™

CoolFET™ GTO™ QT Optoelectronics™

CROSSVOLT™ HiSeC™ Quiet Series™ DOME™ ISOPLANAR™ SuperSOT™-3 E²CMOSTM MICROWIRE™ SuperSOT™-6 OPTOLOGIC™ EnSigna™ SuperSOT™-8 FACT™ OPTOPLANAR™ SyncFET™ POP™ FACT Quiet Series™ TinyLogic™

FAST® PowerTrench® UHC™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.