
Abstract

General Description The MAX5924/MAX5925/MAX5926 1V to 13.2V hot-swap controllers allow the safe insertion and removal of circuit cards into live backplanes. These devices hot swap supplies ranging from 1 V to 13.2 V provided that the device supply voltage, V_{CC}, is at or above 2.25 V and the hotswapped supply, VS, does not exceed VCC. The MAX5924/MAX5925/MAX5926 hot-swap controllers limit the inrush current to the load and provide a circuitbreaker function for overcurrent protection. The devices operate with or without a sense resistor. When operating without a sense resistor, load-probing circuitry ensures a short circuit is not present during startup, then gradually turns on the external MOSFET. After the load probing is complete, on-chip comparators provide overcurrent protection by monitoring the voltage drop across the external MOSFET on-resistance. In the event of a fault condition, the load is disconnected.

The MAX5924/MAX5925/MAX5926 include many integrated features that reduce component count and design time, including configurable turn-on voltage, slew rate, and circuit-breaker threshold. An on-board charge pump provides the gate drive for a low-cost, external n-channel MOSFET.

The MAX5924/MAX5925/MAX5926 are available with open-drain PGOOD and/or PGOOD outputs. The MAX5925/MAX5926 also feature a circuit breaker with temperature-compensated RDS(ON) sensing. The MAX5926 features a selectable 0ppm/ ${ }^{\circ} \mathrm{C}$ or $3300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient. The MAX5924 temperature coefficient is 0ppm $/{ }^{\circ} \mathrm{C}$ and the MAX5925 temperature coefficient is $3300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Autoretry and latched faultmanagement configurations are available (see the Selector Guide).

Applications
Base Stations
RAID
Remote-Access Servers
Network Routers and Switches
Servers
Portable Device Bays
$\mu M A X$ is a registered trademark of Maxim Integrated Products, Inc.

[^0]- Hot Swap 1V to 13.2 V with $\mathrm{Vcc} \geq 2.25 \mathrm{~V}$
- Drive High-Side n-Channel MOSFET
- Operation With or Without Rsense
- Temperature-Compensated R(DS(ON) Sensing
- Protected During Turn-On into Shorted Load
- Adjustable Circuit-Breaker Threshold
- Programmable Slew-Rate Control
- Programmable Turn-On Voltage
- Autoretry or Latched Fault Management - 10-Pin μ MAX ${ }^{\circledR}$ or 16-Pin QSOP Packages

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX5924AEUB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$
MAX5924BEUB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$
MAX5924CEUB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$
MAX5924DEUB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$
MAX5925AEUB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$
MAX5925BEUB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$
MAX5925CEUB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$
MAX5925DEUB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$
MAX5926EEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$16 \mathrm{QSOP}-E P^{* *}$

*Future product-contact factory for availability.
${ }^{* *} E P=$ Exposed pad.

Typical Operating Circuits

SEE FIGURE 1 FOR A DETAILED TYPICAL OPERATING CIRCUIT WITHOUT RSENSE.
Typical Operating Circuits continued at end of data sheet.

1V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND, unless otherwise noted).
VCc ...-0.3V to +14V
GATE*.
-0.3 V to +20 V
All Other Pins-0.3V to the lower of (Vcc +0.3 V) or +14 V SC_DET Current (200 ms pulse width, 15% duty cycle) ... 140 mA
Continuous Current (all other pins).................................... 20 mA
Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$
10-Pin $\mu M A X\left(\right.$ derate $6.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\left.+70^{\circ} \mathrm{C}\right) \ldots \ldots556 \mathrm{~mW}$
$16-$ Pin QSOP (derate $18.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\left.+70^{\circ} \mathrm{C}\right) \ldots \ldots .1509 \mathrm{~mW}$
Operating Temperature Range .. $+300^{\circ} \mathrm{C}$
*GATE is internally driven and clamped. Do not drive GATE with external source.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(VCC, EN (MAX5924/MAX5925), EN1 $($ MAX5926 $)=+2.25 \mathrm{~V}$ to +13.2 V ; $\overline{\mathrm{EN} 2}(\mathrm{MAX5926})=0 \mathrm{~V}$; V_{S} (see Figure 1$)=+1.05 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}} ; \mathrm{T}_{\mathrm{A}}=$ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{RL}=500 \Omega$ from OUT to GND, CL=1 $=\mathrm{F}$, SLEW $=0$ en, T_{A} $=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
POWER SUPPLIES							
VCC Operating Range	VCC			2.25		13.2	V
Vs Operating Range	V_{S}	V_{S} as defined in Figure 1		1.05		VCC	V
Supply Current	ICC	FET is fully enhanced, SC_DET = VCC			1.5	2.5	mA
UNDERVOLTAGE LOCKOUT (UVLO)							
UVLO Threshold	VUVLO	Default value, V_{S} and $\mathrm{V}_{C C}$ increasing, Figure 1		1.73	2.06	2.47	V
VCc UVLO Deglitch Time	tDG	(Note 2)		900			$\mu \mathrm{s}$
VCC UVLO Startup Delay	tD,UVLO			123	200	350	ms
LOAD-PROBE							
Load-Probe Resistance (Note 3)	RLP	$2.25 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<5 \mathrm{~V}$		4	30	65	Ω
		$5 \mathrm{~V}<\mathrm{V}_{C C}<13.2 \mathrm{~V}$		3	10	20	
Load-Probe Timeout	tLP			43	102	205	ms
Load-Probe Threshold Voltage	VLP,TH	(Note 4)		172	200	235	mV
CIRCUIT BREAKER							
Circuit-Breaker Programming Current	ICB	TC = high (MAX5926), MAX5924		34	37	42	$\mu \mathrm{A}$
	ICB25	$\begin{aligned} & \text { TC = low (MAX5926), } \\ & \text { MAX5925 (Note 5) } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.25 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	44	51	58	
			$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 13.2 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	49	54	58	
	ICB85	$\begin{aligned} & \text { TC = low (MAX5926), } \\ & \text { MAX5925 (Note 5) } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.25 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	47	52	60	
			$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 13.2 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	58	63	70	

1V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor

ELECTRICAL CHARACTERISTICS (continued)

(VCC, EN (MAX5924/MAX5925), EN1 $(\mathrm{MAX5926})=+2.25 \mathrm{~V}$ to +13.2 V ; $\overline{\mathrm{EN} 2}(\mathrm{MAX5926})=0 \mathrm{~V}$; VS (see Figure 1$)=+1.05 \mathrm{~V}$ to $\mathrm{VCC} ; \mathrm{T}_{\mathrm{A}}=$ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{RL}=500 \Omega$ from OUT to GND, CL $=1 \mu \mathrm{~F}, \mathrm{SLEW}=\mathrm{open}, \mathrm{T}_{\mathrm{A}}$ $=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Circuit-Breaker Programming Current During Startup	ICB,SU		$2 \times \mathrm{ICB}$			$\mu \mathrm{A}$
Circuit-Breaker Enable Threshold	$\mathrm{V}_{\mathrm{CB}, \mathrm{EN}}$	VGATE - Vout, rising gate voltage (Note 6)	2.3	3.6	4.65	V
Circuit-Breaker Comparator Offset Voltage	VCB_OS			0.3	± 4.7	mV
Fast Circuit-Breaker Offset Resistor	RcbF	Figure 3	1.2	1.9	2.7	k ת
Slow Circuit-Breaker Delay	tCBS	$V_{C B}-V_{\text {SENSE }}=10 \mathrm{mV}$	0.95	1.6	2.95	ms
Fast Circuit-Breaker Delay	tCBF	$V_{\text {CB }}-V_{\text {SENSE }}=500 \mathrm{mV}$		280		ns
Circuit-Breaker Trip Gate Pulldown Current	IGATE,PD	$V_{G A T E}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=13.2 \mathrm{~V}$	13.5	27		mA
Circuit-Breaker Temperature Coefficient	TCICB	MAX5924, TC = high (MAX5926)	0			ppm/ ${ }^{\circ} \mathrm{C}$
		MAX5925, TC = low (MAX5926)	3300			
OUT Current	Iout				120	$\mu \mathrm{A}$
MOSFET DRIVER						
External Gate Drive	VGS	$V_{\text {GATE }}-V_{\text {OUT }}$ ($2.25 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 13.2 \mathrm{~V}$	3.0	4.91	6.70	V
Load Voltage Slew Rate	SR	SLEW $=$ open, CGATE $=10 \mathrm{nF}$	2.19	9.5		V/ms
		CSLEW $=300 \mathrm{nF}, \mathrm{CGATE}=10 \mathrm{nF}$ (Note 8)		0.84		
Gate Pullup Current Capacity	IGATE	$\mathrm{V}_{\text {GATE }}=0 \mathrm{~V}$	239			$\mu \mathrm{A}$
ENABLE COMPARATOR						
EN, EN1 Reference Threshold	VEN/UVLO	VEN (MAX5924/MAX5925) or VEN1 (MAX5926) rising	0.747	0.795	0.850	V
EN, EN1 Hysteresis	VEN,HYS			30		mV
EN, EN1 Input Bias Current	IEN	$\begin{aligned} & \text { EN }(\text { MAX5924/MAX5925 })=V_{C C}, \\ & \text { EN1 }(\text { MAX5926 })=V_{C C} \end{aligned}$		± 8	± 50	nA
DIGITAL OUTPUTS (PGOOD, $\overline{\text { PGOOD }}$)						
Power-Good Output Low Voltage	VOL	$\mathrm{IOL}=1 \mathrm{~mA}$		0.3	0.4	V
Power-Good Output Open-Drain Leakage Current	IOH	PGOOD/ $\overline{\text { PGOOD }}=13.2 \mathrm{~V}$		0.2	1	$\mu \mathrm{A}$
Power-Good Trip Point	VTHPGOOD	VGATE - VOUT, rising gate voltage	VCB_EN	3.6	4.7	V
Power-Good Hysteresis	VPG,HYS			0.36		V

1V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor

ELECTRICAL CHARACTERISTICS (continued)

(VCC, EN (MAX5924/MAX5925), EN1 $(\mathrm{MAX5926})=+2.25 \mathrm{~V}$ to +13.2 V ; $\overline{\mathrm{EN} 2}(\mathrm{MAX5926})=0 \mathrm{~V}$; VS (see Figure 1$)=+1.05 \mathrm{~V}$ to $\mathrm{VCC} ; \mathrm{T}_{\mathrm{A}}=$ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, RL $=500 \Omega$ from OUT to GND, CL $=1 \mu \mathrm{~F}, \mathrm{SLEW}=\mathrm{open}, \mathrm{T}_{\mathrm{A}}$ $=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
LOGIC AND TIMING (TC, LATCH (MAX5926), EN2 (MAX5926)						
Autoretry Delay	tretry	Autoretry mode	0.6	1.6	3.3	s
Input Voltage	V_{IH}		2.0			V
	VIL				0.4	
Input Bias Current	IBIAS	Logic high at 13.2 V		3		$\mu \mathrm{A}$
Time to Clear a Latched Fault	TCLR	MAX5924A/ MAX5924B MAX5925A/ MAX5925B MAX5926 in latched mode		200		$\mu \mathrm{S}$

Note 1: All devices are 100% tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $+85^{\circ} \mathrm{C}$. All temperature limits at $-40^{\circ} \mathrm{C}$ are guaranteed by design.
Note 2: $V_{C C}$ drops 30% below the undervoltage lockout voltage during tDG are ignored.
Note 3: RLP is the resistance measured between $V_{C C}$ and SC_DET during the load-probing phase, tLP.
Note 4: Tested at $+25^{\circ} \mathrm{C} \&+85^{\circ} \mathrm{C}$. Guaranteed by design at $-40^{\circ} \mathrm{C}$.
Note 5: The circuit-breaker programming current increases linearly from VCC $=2.25 \mathrm{~V}$ to 5 V . See the Circuit-Breaker Current vs.
Supply Voltage graph in the Typical Operating Characteristics.
Note 6: See the Startup Mode section for more information.
Note 7: VGATE is clamped to 17 V (typ) above ground.
Note 8: $\mathrm{dv} / \mathrm{dt}=330 \times 10^{-9} / \mathrm{CsLEW}(\mathrm{V} / \mathrm{ms})$, nMOS device used for measurement was IRF9530N. Slew rate is measured at the load.

Typical Operating Characteristics

$\left(V_{C C}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \mathrm{CSLEW}^{2}=330 \mathrm{nF}, \mathrm{C}_{\mathrm{GATE}}=10 \mathrm{nF}, \mathrm{R}_{\mathrm{L}}=500 \Omega\right.$, Figure $1, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

1 V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor

Typical Operating Characteristics (continued)
$\left(V_{C C}=5 V, C_{L}=1 \mu F, C_{S L E W}=330 n F, C_{G A T E}=10 n F, R_{L}=500 \Omega\right.$, Figure $1, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

1V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor

$\left(V_{C C}=5 \mathrm{~V}, C_{L}=1 \mu \mathrm{~F}, \mathrm{CSLEW}^{2}=330 \mathrm{nF}, \mathrm{C}_{\mathrm{GATE}}=10 \mathrm{nF}, \mathrm{R}_{\mathrm{L}}=500 \Omega\right.$, Figure $1, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

1 V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor

Typical Operating Characteristics (continued)
$\left(V_{C C}=5 V, C_{L}=1 \mu F, C_{S L E W}=330 n F, C_{G A T E}=10 n F, R_{L}=500 \Omega\right.$, Figure $1, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

400ms/div

1V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor

PIN			NAME	FUNCTION
MAX5924A/ MAX5924C/ MAX5925A/ MAX5925C	MAX5924B/ MAX5924D/ MAX5925B/ MAX5925D	MAX5926		
1	1	1	VCC	Power-Supply Input. Connect V_{C} to a voltage between 2.47 V and 13.2 V . Vcc must always be equal to or greater than $\mathbf{V}_{\mathbf{S}}$ (see Figure 1).
2	2	2	SC_DET	Short-Circuit Detection Output. Connect SC_DET to Vout through a series resistor, RSC, when not using RSENSE. SC_DET forces current (limited to $\approx 200 \mathrm{~mA}$) into the external load through RSC at startup to determine whether there is a short circuit (load probing). Connect SC_DET directly to VCc when using RSENSE, Do not connect SC_DET to VCC when not using RSENSE in an attempt to disable load probing.
3	3	-	EN	ON/OFF Control Input. Drive EN high to enable the device. Drive EN low to disable the device. An optional external resistive-divider connected between $\mathrm{V}_{\mathrm{CC}}, \mathrm{EN}$, and GND sets the programmable turn-on voltage.
4	-	4	$\overline{\text { PGOOD }}$	Open-Drain Active-Low Power-Good Output
-	4	7	PGOOD	Open-Drain Active-High Power-Good Output
5	5	5	GND	Ground
6	6	12	SLEW	Slew-Rate Adjustment Input. Connect an external capacitor between SLEW and GND to adjust the gate slew rate. Leave SLEW unconnected for the default slew rate.
7	7	13	GATE	Gate-Drive Output. Connect GATE to the gate of the external n-channel MOSFET.
8	8	14	OUT	Output Voltage. Connect OUT to the source of the external MOSFET.
9	9	15	SENSE	Circuit-Breaker Sense Input. Connect SENSE to OUT when not using an external RSENSE (Figure 1). Connect SENSE to the drain of the external MOSFET when using an external RSENSE (Figure 2).
10	10	16	CB	Circuit-Breaker Threshold Programming Input. Connect an external resistor, $R_{C B}$, from CB to V_{S} to set the circuit-breaker threshold voltage.
-	-	3	EN1	Active-High ON/OFF Control Input. Drive EN1 high to enable the device when $\overline{\mathrm{EN2}}$ is low. Drive EN1 low to disable the device, regardless of the state of $\overline{\mathrm{EN} 2}$. An optional external resistive-divider between V_{CC}, EN1, and GND sets the programmable turn-on voltage while EN2 is low.
-	-	6	$\overline{\mathrm{EN} 2}$	Active-Low ON/OFF Control Input. Drive EN2 low to enable the device when EN1 is high. Drive EN2 high to disable the device, regardless of the state of EN1.
-	-	8	LATCH	Latch Mode Input. Drive LATCH low for autoretry mode. Drive LATCH high for latched mode.
-	-	9	TC	Circuit-Breaker Temperature Coefficient Selection Input. Drive TC low to select a 3300ppm $/{ }^{\circ} \mathrm{C}$ temperature coefficient. Drive TC high to select a Oppm $/{ }^{\circ} \mathrm{C}$ temperature coefficient.
-	-	10, 11	N.C.	No Connection. Not internally connected.
-	-	EP	EP	Exposed Pad. Connect EP to GND.

1V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor

Figure 1. Typical Operating Circuit (Without RSENSE)

Figure 2. Typical Operating Circuit (With RSENSE)

1 V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor

Figure 3. Functional Diagram

1 V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor

Detailed Description

The MAX5924/MAX5925/MAX5926 are hot-swap controller ICs designed for applications where a line card is inserted into a live backplane. Normally, when a line card is plugged into a live backplane, the card's discharged filter capacitors provide a low impedance that can momentarily cause the main power supply to collapse. The MAX5924/MAX5925/MAX5926 are designed to reside either in the backplane or in the removable card to provide inrush current limiting and short-circuit protection. This is achieved using an external n-channel MOSFET and an optional external current-sense resistor.
Several critical parameters can be configured:

- Slew rate (inrush current)
- Circuit-breaker threshold
- Turn-on voltage
- Fault-management mode (MAX5926)
- Circuit-breaker temperature coefficient (MAX5926)

See the Selector Guide for a device-specific list of fac-tory-preset features and parameters.

Startup Mode
It is important that both $\mathrm{V}_{C C}$ and V_{S} rise at a minimum rate of $100 \mathrm{mV} / \mathrm{ms}$ during the critical time when power voltages are below those values required for proper logic control of internal circuitry. This applies for $0.5 \mathrm{~V} \leq$ $\mathrm{VCC} \leq 2.5 \mathrm{~V}$ and $0.5 \mathrm{~V} \leq \mathrm{VS}_{\mathrm{S}} \leq 0.8 \mathrm{~V}$. This is particularly true when LATCH is tied high.
The MAX5924/MAX5925/MAX5926 control an external MOSFET placed in the positive power-supply pathway. When power is first applied, the MAX5924/MAX5925/ MAX5926 hold the MOSFET off indefinitely if the supply voltage is below the undervoltage lockout level or if the device is disabled (see the EN (MAX5924/MAX5925), EN1/EN2 (MAX5926) section). If neither of these conditions exist, the device enters a UVLO startup delay period for $\approx 200 \mathrm{~ms}$. Next, the MAX5924/MAX5925/ MAX5926 detect whether an external sense resistor is present; and then autoconfigure accordingly (see Figure 4).

- If no sense resistor is present, bilevel fault protection is disabled and load-probing circuitry is enabled (see the Load Probing section).
If load probing is not successful, the fault is managed according to the selected fault management mode (see the Latched and Auto-Retry Fault Management section).
If load probing (see the Load Probing section) is successful, slew-rate limiting is employed to gradually turn on the MOSFET.

Figure 4. Startup Flow Chart

- If the device detects an external RSENSE, circuitbreaker threshold is set at $2 \times 1 \mathrm{CB}$, the slow comparator is disabled, the startup phase begins without delay for load probing, and slew-rate limiting is employed to gradually turn on the MOSFET.
During the startup phase, the voltage at the load, VoUT, rises at a rate determined by the selected slew rate (see the Slew Rate section). The inrush current, IINRUSH, to the load is limited to a level proportional to the load capacitance, CL , and the slew rate:

$$
I_{\mathrm{NRUSH}}=\frac{\mathrm{C}_{\mathrm{L}} \times \mathrm{SR}}{1000}
$$

where SR is the slew rate in V / ms and CL is load capacitance in $\mu \mathrm{F}$.
For operation with and without RSENSE, once VGATE Vout exceeds Vcb,EN, PGOOD and/or PGOOD assert. When VGATE - Vout $=$ VCB,EN, the MAX5924/ MAX5925/MAX5926 enable standard bilevel fault protection with normal ICB (see the Bilevel Fault Protection section).

1V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor

Load Probing

The MAX5924/MAX5925/MAX5926 load-probing circuitry detects short-circuit conditions during startup. Load probing is active only when no external RSENSE is detected. As the device begins load probing, SC_DET is connected to Vcc through an internal switch with an on-resistance of RLP (Figure 6). Vcc then charges the load with a probe current limited at $\approx 200 \mathrm{~mA}$.
IPROBE = (VCC - VOUT)/(RLP + RSC)

If the load voltage does not reach VLP,TH (0.2 V typ) within tLP, a short-circuit fault is detected and the startup mode is terminated according to the selected faultmanagement mode (see the Fault Management section and Figure 5). If no fault condition is present, PGOOD/PGOOD asserts at the end of the startup period (see the Turn-On Waveforms in the Typical Operating Characteristics).
Load probing can only be, and must be, employed when not using an external RSENSE.

Figure 5. Startup Waveform

Figure 6. Load-Probe Resistance vs. Supply Voltage

Normal Operation

In normal operation, after startup is complete, protection is provided by turning off the external MOSFET when a fault condition is encountered. Dual-speed/ bilevel fault protection incorporates two comparators with different thresholds and response times to monitor the current:

1) Slow comparator. This comparator has a 1.6 ms (typ) response time. The slow comparator ignores low-amplitude momentary current glitches. After an extended overcurrent condition, a fault is acknowledged and the MOSFET gate is discharged.
2) Fast comparator. This comparator has a quick response time and a higher threshold voltage. The fast comparator turns off the MOSFET immediately when it detects a large high-current event such as a short circuit.
In each case, when a fault is encountered, the powergood output deasserts and the device drives GATE low. After a fault, the MAX5924A, MAX5924B, MAX5925A, and MAX5925B latch GATE Iow and the MAX5924C, MAX5924D, MAX5925C, and MAX5925D enter the autoretry mode. The MAX5926 has selectable latched or autoretry modes. Figure 7 shows the slow comparator response to an overcurrent fault.

Figure 7. Slow Comparator Response to an Overcurrent Fault

1 V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor

Bilevel Fault Protection

Bilevel Fault Protection in Startup Mode

Bilevel fault protection is disabled in startup mode, and is enabled when $V_{G A T E}$-vout exceeds $\mathrm{V}_{\mathrm{CB}, \mathrm{EN}}$ at the end of the startup period.
When no RSENSE is detected, neither slow nor fast comparator is active during startup because the high RD(ON) of the MOSFET when not fully enhanced would signal an artificially-high VIN-VSENSE voltage. Load probing prior to startup insures that the output is not short circuited.
When RSENSE is detected, the slow comparator is disabled during startup while the fast comparator remains active. The overcurrent trip level is higher than normal during the startup period because the ICB is temporarily doubled to ICB,SU at this time. This allows higher than normal startup current to allow for output capacitor charging current.

Slow Comparator
The slow comparator is disabled during startup while the external MOSFET turns on.
If the slow comparator detects an overload condition while in normal operation (after startup is complete), it turns off the external MOSFET by discharging the gate capacitance with IGATE,PD. The magnitude of IGATE,PD depends on the external MOSFET gate-to-source voltage, VGS. The discharge current is strongest immediately following a fault and decreases as the MOSFET gate is discharged (Figure 8a).

Figure 8a. Gate Discharge Current vs. MOSFET Gate-to-Source Voltage

Table 1. Selecting Fault Management Mode (MAX5926)

LATCH	FAULT MANAGEMENT
Low	Autoretry mode
High	Latched mode

Fast Comparator
The fast comparator is used for serious current overloads or short circuits. If the load current reaches the fast comparator threshold, the device quickly forces the MOSFET off. The fast comparator has a response time of 280ns, and discharges GATE with IGATE,PD (Figure 8a). The fast comparator is disabled during startup when no RSENSE is detected
Latched and Autoretry Fault Management The MAX5924A, MAX5924B, MAX5925A, and MAX5925B latch the external MOSFET off when an overcurrent fault is detected. Following an overcurrent fault, the MAX5924C, MAX5924D, MAX5925C, and MAX5925D enter autoretry mode. The MAX5926 can be configured for either latched or autoretry mode (see Table 1).
In autoretry, a fault turns the external MOSFET off then automatically restarts the device after the autoretry delay, tRETRY. During the autoretry delay, pull EN or EN1 low to restart the device. In latched mode, pull EN or EN1 low for at least 100μ s to clear a latched fault and restart the device.

Power-Good Outputs

The power-good output(s) are open-drain output(s) that deassert:

- When Vcc < Vuvlo
- During tD,UVLO
- When VGS < VTHPGOOD
- During load probing
- When disabled (EN = GND (MAX5924/MAX5925), EN1 $=$ GND or EN2 $=$ high (MAX5926))
- During fault management
- During tretry or when latched off (MAX5924A, MAX5924B, MAX5925A, MAX5925B, or MAX5926 (LATCH = low)).
PGOOD/PGOOD asserts only if the part is in normal mode and no faults are present.

1V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor

Undervoltage Lockout (UVLO)

UVLO circuitry prevents the MAX5924/MAX5925/ MAX5926 from turning on the external MOSFET until VCC exceeds the UVLO threshold, VuVLO, for tD,UVLO. UVLO protects the external MOSFET from insufficient gate-drive voltage, and tD,UVLO ensures that the board is fully plugged into the backplane and V_{CC} is stable prior to powering the hot-swapped system. Any input voltage transient at VCC below the UVLO threshold for more than the UVLO deglitch period, tDG, resets the device and initiates a startup sequence. Device operation is protected from momentary input-voltage steps extending below the UVLO threshold for a deglitch period, tDG. However, the power-good output(s) may momentarily deassert if the magnitude of a negative step in VCC exceeds approximately 0.5 V , and VCC drops below VuVlo. Operation is unaffected and the power-good output(s) assert(s) within 200μ s as shown in Figure 8b. This figure also shows that if the UVLO condition exceeds tDG $=900 \mu \mathrm{~s}$ (typ), the power-good output(s) again deassert(s) and the load is disconnected.

Determining Inrush Current

Determining a circuit's inrush current is necessary to choose a proper MOSFET. The MAX5924/MAX5925/ MAX5926 regulate the inrush current by controlling the output-voltage slew rate, but inrush current is also a function of load capacitance. Determine an anticipated inrush current using the following equation:

Figure 8b. PGOOD Behavior with Large Negative Input-Voltage Step when VS is Near VS(MIN)

$$
\mathrm{I}_{\mathrm{INRUSH}}(\mathrm{~A})=\mathrm{C}_{\mathrm{L}} \frac{\mathrm{dV} V_{\mathrm{OUT}}}{\mathrm{dt} \times 1000}=C_{\mathrm{L}} \times \mathrm{SR}
$$

where C_{L} is the load capacitance in $\mu \mathrm{F}$ and SR is the selected MAX5924/MAX5925/MAX5926 output slew rate in V / ms. For example, assuming a load capacitance of $100 \mu \mathrm{~F}$ and using the value of $\mathrm{SR}=10 \mathrm{~V} / \mathrm{ms}$, the anticipated inrush current is 1 A . If a $16 \mathrm{~V} / \mathrm{ms}$ output slew rate is used, the inrush current increases to 1.6A. Choose SR so the maximum anticipated inrush current does not trip the fast circuit-breaker comparator during startup.

Slew Rate

The MAX5924/MAX5925/MAX5926 limit the slew rate of Vout. Connect an external capacitor, CSLEW, between SLEW and GND to adjust the slew-rate limit. Floating SLEW sets the maximum slew rate to the minimum value. Calculate CSLEW using the following equation:

$$
\text { CSLEW }=330 \times 10^{-9} / \text { SR }
$$

where, $S R$ is the desired slew rate in V / ms and CSLEW is in nF .
This equation is valid for CSLEW $\geq 100 \mathrm{nF}$. For higher SR, see the Typical Operating Characteristics.
A $2 \mu \mathrm{~A}$ (typ) pullup current clamped to 1.4 V causes an initial jump in the gate voltage, VGATE, if CGATE is small and the slew rate is slow (Figure 3). Figure 9 illustrates how the addition of gate capacitance minimizes this initial jump. CGATE should not exceed 25 nF .

Figure 9. Impact of CGATE on the VGATE Waveform

1 V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor

EN (MAX5924/MAX5925), EN1/EN2 (MAX5926)

The enable comparators control the on/off function of the MAX5924/MAX5925/MAX5926. Enable is also used to reset the fault latch in latch mode. Pull EN or EN1 low for 100μ s to reset the latch. A resistive divider between EN or EN1, Vs, and GND sets the programmable turnon voltage to a voltage greater than VUVLO (Figure 10).

Selecting a Circuit-Breaker Threshold
The MAX5924/MAX5925/MAX5926 offer a circuit-breaker function to protect the external MOSFET and the load from the potentially damaging effects of excessive cur-

Figure 10. Adjustable Turn-On Voltage
rent. As load current flows through RDS(ON) (Figure 12) or RSENSE (Figure 13), a voltage drop is generated. After VGS exceeds VCB,EN, the MAX5924/MAX5925/ MAX5926 monitor this voltage to detect overcurrent conditions. If this voltage exceeds the circuit-breaker threshold, the external MOSFET turns off and the power-good output(s) deassert(s). To accommodate different MOSFETs, sense resistors, and load currents, the MAX5924/MAX5925/MAX5926 voltage across RCB can be set between 10 mV and 500 mV . The value of the circuit-breaker voltage must be carefully selected based on VS (Figure 11).

No Rsense Mode
When operating without RSENSE, calculate the circuitbreaker threshold using the MOSFET's RDS(ON) at the worst possible operating condition, and add a 20% overcurrent margin to the maximum circuit current. For example, if a MOSFET has an $\operatorname{RDS}(O N)$ of 0.06Ω at $\mathrm{T}_{A}=$ $+25^{\circ} \mathrm{C}$, and a normalized on-resistance factor of 1.75 at $\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$, the $\operatorname{RDS}(\mathrm{ON})$ used for calculation is the product of these two numbers, or $(0.06 \Omega) \times(1.75)=$ 0.105Ω. Then, if the maximum current is expected to be 2 A , using a 20% margin, the current for calculation is $(2 \mathrm{~A}) \times(1.2)=2.4 \mathrm{~A}$. The resulting minimum circuit-breaker threshold is then a product of these two numbers, or $(0.105 \Omega) \times(2.4 \mathrm{~A})=0.252 \mathrm{~V}$. Using this method to choose a circuit-breaker threshold allows the circuit to operate under worst-case conditions without causing a circuitbreaker fault, but the circuit-breaker function will still detect a short circuit or a gross overcurrent condition.

Figure 11. Maximum Circuit-Breaker Programming Resistor vs. Temperature

1V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor

To determine the proper circuit-breaker resistor value use the following equation, which refers to Figure 12:
where ITRIPSLOW is the desired slow-comparator trip current.
The fast-comparator trip current is determined by the selected RCB value and cannot be adjusted independently. The fast-comparator trip current is given by:

$$
I_{\text {TRIPFAST }}=\frac{I_{\mathrm{CB}} \times\left(R_{\mathrm{CBF}}+R_{\mathrm{CB}}\right) \pm \mathrm{V}_{\mathrm{CB}, \mathrm{OS}}}{R_{\mathrm{DS}(\mathrm{ON})(\mathrm{T})}}
$$

SC_DET must be connected to OUT through the selected RSC when not using RSENSE.

Rsense Mode
When operating with RSENSE, calculate the circuitbreaker threshold using the worst possible operating conditions, and add a 20% overcurrent margin to the maximum circuit current. For example, with a maximum expected current of 2 A , using a 20% margin, the current for calculation is $(2 \mathrm{~A}) \times(1.2)=2.4 \mathrm{~A}$. The resulting

Figure 12. Circuit Breaker Using RDS(ON)
minimum circuit-breaker threshold is then a product of this current and RSENSE $=0.06 \Omega$, or $(0.06 \Omega) \times(2.4 \mathrm{~A})=$ 0.144 V . Using this method to choose a false circuitbreaker threshold allows the circuit to operate under worst-case conditions without causing a circuit-breaker fault, but the circuit-breaker function will still detect a short-circuit or a gross overcurrent condition.
To determine the proper circuit-breaker resistor value, use the following equation, which refers to Figure 13:

$$
\mathrm{R}_{\mathrm{CB}}=\frac{\left(\mathrm{I}_{\text {TRIPSLOW }} \times \mathrm{R}_{\text {SENSE }}\right)+\left|\mathrm{V}_{\mathrm{CB}, \mathrm{OS}}\right|}{\mathrm{I}_{\mathrm{CB}}}
$$

where, ITRIPSLOW is the desired slow-comparator trip current.
The fast-comparator trip current is determined by the selected RCB value and cannot be adjusted independently. The fast-comparator trip current is given by:

$$
I_{\text {TRIPFAST }}=\frac{I_{C B} \times\left(R_{C B F}+R_{C B}\right) \pm V_{C B, O S}}{R_{S E N S E}}
$$

SC_DET should be connected to VCC when using Rsense.

Figure 13. Circuit Breaker Using RSENSE

1 V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor

Circuit-Breaker Temperature Coefficient

In applications where the external MOSFET's on-resistance is used as a sense resistor to determine overcurrent conditions, a $3300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient is desirable to compensate for the $\operatorname{RDS}(\mathrm{ON})$ temperature coefficient. Use the MAX5926's TC input to select the circuit-breaker programming current's temperature coefficient, TCICB (see Table 2). The MAX5924 temperature coefficient is preset to $0 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, and the MAX5925's is preset to $3300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
Setting TCICB to $3300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ allows the circuit-breaker threshold to track and compensate for the increase in the MOSFET's RDS(ON) with increasing temperature. Most MOSFETs have a temperature coefficient within a 3000ppm $/{ }^{\circ} \mathrm{C}$ to $7000 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ range. Refer to the MOSFET data sheet for a device-specific temperature coefficent.
RDS(ON) and ICB are temperature dependent, and can therefore be expressed as functions of temperature. At a given temperature, the MAX5925/MAX5926 indicate an overcurrent condition when:

ITRIPSLOW $\times \operatorname{RDS}(\mathrm{ON})(\mathrm{T}) \geq \mathrm{ICB}(\mathrm{T}) \times \operatorname{RCB}+\left|\mathrm{V}_{\mathrm{CB}}, \mathrm{OS}\right|$ where $\mathrm{V}_{\mathrm{CB}, \mathrm{OS}}$ is the worst-case offset voltage. Figure 14 graphically portrays operating conditions for a MOSFET with a $4500 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient.

Applications Information
 Component Selection

n-Channel MOSFET
Most circuit component values may be calculated with the aid of the MAX5924-MAX5926. The "Design calculator for choosing component values" software can be downloaded from the MAX5924-MAX5926 Quickview on the Maxim website.
Select the external n-channel MOSFET according to the application's current and voltage level. Table 3 lists some recommended components. Choose the MOSFET's on-resistance, RDS(ON), low enough to have a minimum voltage drop at full load to limit the MOSFET power dissipation. High RDS(ON) can cause undesired power loss and output ripple if the board has pulsing loads or triggers an external undervoltage reset monitor at full load. Determine the device power-rating requirement to accommodate a short circuit on the board at startup with the device configured in autoretry mode.
Using the MAX5924/MAX5925/MAX5926 in latched mode allows the consideration of MOSFETs with higher RDS(ON) and lower power ratings. A MOSFET can typically with-

Table 2. Programming the Temperature Coefficient (MAX5926)

TC	TC $_{\text {ICB }}\left(\mathbf{p p m} /{ }^{\circ} \mathbf{C}\right)$
High	0
Low	3300

Table 3. Suggested External MOSFETs

APPLICATION CURRENT (A)	PART	DESCRIPTION
1	International Rectifier IRF7401	SO-8
2	Siliconix Si4378DY	SO-8
5	Siliconix SUD40N02-06	DPAK
10	Siliconix SUB85N02-03	D2PAK

Figure 14. Circuit-Breaker Trip Point and Current-Sense Voltage vs. Temperature
stand single-shot pulses with higher dissipation than the specified package rating. Low MOSFET gate capacitance is not necessary since the inrush current limiting is achieved by limiting the gate $\mathrm{dv} / \mathrm{dt}$. Table 4 lists some recommended manufacturers and components.
Be sure to select a MOSFET with an appropriate gate drive (see the Typical Operating Characteristics). Typically, for VCc less than 3V, select a 2.5 V VGS MOSFET.

1V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor

Table 4. Component Manufacturers

COMPONENT	MANUFACTURER	PHONE	WEBSITE
Sense Resistors	Dale-Vishay	$402-564-3131$	www.vishay.com
	IRC	$828-264-8861$	www.irctt.com
MOSFETs	Fairchild	$888-522-5372$	www.fairchildsemi.com
	International Rectifier	$310-233-3331$	www.irf.com

Optional Sense Resistor

Select the sense resistor in conjunction with R_{CB} to set the slow and fast circuit-breaker thresholds (see the Selecting a Circuit-Breaker Threshold section). The sense-resistor power dissipation depends on the device configuration. If latched mode is selected, PRSENSE $=$ (IOVERLOAD) ${ }^{2} \times$ RSENSE; if autoretry is selected, then PrSense $=(\text { Ioverload })^{2} \times$ RSENSE $\times($ ton $/$ tretry $)$. Choose a sense-resistor power rating of twice the PRSENSE for long-term reliable operation. In addition, ensure that the sense resistor has an adequate I2T rating to survive instantaneous short-circuit conditions.

No-Load Operation

The internal circuitry is capable of sourcing a current at the OUT terminal of up to $120 \mu \mathrm{~A}$ from a voltage V IN + VGS. If there is no load on the circuit, the output capacitor will charge to a voltage above VIN until the external MOSFET's body diode conducts to clamp the capacitor voltage at VIN plus the body-diode V_{F}. When testing or operating with no load, it is therefore recommended that the output capacitor be paralleled with a resistor of value:

$$
R=V x / 120 \mu A
$$

where $V X$ is the maximum acceptable output voltage prior to hot-swap completion.

Design Procedure

Given:

- $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$
- $C L=150 \mu F$
- Full-Load Current $=5 \mathrm{~A}$
- No Rsense
- IINRUSH $=500 \mathrm{~mA}$

Procedures:

1) Calculate the required slew rate and corresponding CsLEW:

$$
S R=\frac{I_{\mathrm{INRUSH}}}{1000 \times \mathrm{C}_{\mathrm{L}}}=3.3 \frac{\mathrm{~V}}{\mathrm{~ms}}
$$

$$
\mathrm{C}_{\text {SLEW }}=\frac{330 \times 10^{-9}}{\mathrm{SR}}=\frac{330 \times 10^{-9}}{3.3 \frac{\mathrm{~V}}{\mathrm{~ms}}}=0.1 \mu \mathrm{~F}
$$

2) Select a MOSFET and determine the worst-case power dissipation.
3) Minimize power dissipation at full load current and at high temperature by selecting a MOSFET with an appropriate $\mathrm{RDS}(\mathrm{ON})$. Assume a $20^{\circ} \mathrm{C}$ temperature difference between the MAX5924/MAX5925/ MAX5926 and the MOSFET.
For example, at room temperature the IRF7822's $\operatorname{RDS}(\mathrm{ON})=6.5 \mathrm{~m} \Omega$. The temperature coefficient for this device is $4000 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. The maximum $\operatorname{RDS}(\mathrm{ON})$ for the MOSFET at $T_{J}($ MOSFET $)=+105^{\circ} \mathrm{C}$ is:

$$
\begin{aligned}
\mathrm{R}_{\mathrm{DS}(\mathrm{ON}) 105} & =6.5 \mathrm{~m} \Omega \times\left(1+\left(105^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right) \times 4000 \frac{\mathrm{ppm}}{{ }^{\circ} \mathrm{C}}\right) \\
& =8.58 \mathrm{~m} \Omega
\end{aligned}
$$

The power dissipation in the MOSFET at full load is:

$$
P_{D}=I^{2} R=(5 A)^{2} \times 8.58 \mathrm{~m} \Omega=215 \mathrm{~mW}
$$

4) Select Rcb.

Since the MOSFET's temperature coefficient is $4000 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, which is greater than TCICB (3300ppm $/{ }^{\circ} \mathrm{C}$), calculate the circuit-breaker threshold at high temperature so the circuit breaker is guaranteed not to trip at lower temperature during normal operation (Figure 15).

$$
\mathrm{R}_{\mathrm{CB}}=((6 \mathrm{~A} \times 8.58 \mathrm{~m} \Omega)+4.7 \mathrm{mV}) / 69.5 \mu \mathrm{~A}=808 \Omega
$$

$$
\begin{aligned}
& \text { ITRIPSLOW }=\text { IFULL LOAD }+20 \%=5 \mathrm{~A}+20 \%=6 \mathrm{~A} \\
& \operatorname{RDS}(O N) 105=8.58 \mathrm{~m} \Omega \text { (max), from step } 2 \\
& I^{\text {CB8 }}=58 \mu \mathrm{~A} \times\left(1+\left(3300 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \times(85-25)^{\circ} \mathrm{C}\right)\right. \\
& =69.5 \mu \mathrm{~A}(\mathrm{~min}) \\
& R_{C B}=\frac{\left(I_{\text {TRIPSLOW }} \times R_{\text {DS(ON)105 }}\right)+\left|V_{\mathrm{CB}, \mathrm{OS}}\right|}{\mathrm{I}_{\mathrm{CB} 85}}
\end{aligned}
$$

1 V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor

Layout Considerations

Keep all traces as short as possible and maximize the high-current trace dimensions to reduce the effect of undesirable parasitic inductance. Place the MAX5924/ MAX5925/MAX5926 close to the card's connector. Use a ground plane to minimize impedance and inductance. Minimize the current-sense resistor trace length ($<10 \mathrm{~mm}$), and ensure accurate current sensing with Kelvin connections.

When the output is short circuited, the voltage drop across the external MOSFET becomes large. Hence, the power dissipation across the switch increases, as does the die temperature. An efficient way to achieve good power dissipation on a surface-mount package is to lay out two copper pads directly under the MOSFET package on both sides of the board. Connect the two pads to the ground plane through vias, and use enlarged copper mounting pads on the top side of the board.
It is important to maximize the thermal coupling between the MOSFET and the MAX5925/MAX5926 to balance the device junction temperatures. When the temperatures of
the two devices are equal, the circuit-breaker trip threshold is most accurate. Keep the MOSFET and the MAX5925/MAX5926 as close to each other as possible to facilitate thermal coupling.

Figure 15. Kelvin Connection for the Current-Sense Resistor

Selector Guide

PART	CIRCUIT-BREAKER TEMPCO (ppm/ ${ }^{\circ} \mathrm{C}$)	FAULT MANAGEMENT	POWER-GOOD OUTPUT	
			$\begin{gathered} \overline{\text { PGOOD }} \\ \text { (OPEN-DRAIN) } \end{gathered}$	$\begin{gathered} \text { PGOOD } \\ \text { (OPEN-DRAIN) } \end{gathered}$
MAX5924A	0	Latched	\checkmark	-
MAX5924B	0	Latched	-	\checkmark
MAX5924C	0	Autoretry	\checkmark	-
MAX5924D	0	Autoretry	-	\checkmark
MAX5925A	3300	Latched	\checkmark	-
MAX5925B	3300	Latched	-	\checkmark
MAX5925C	3300	Autoretry	\checkmark	-
MAX5925D	3300	Autoretry	-	\checkmark
MAX5926	0 or 3300 (Selectable)	Latched or Autoretry (Selectable)	\checkmark	\checkmark

1V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor

Typical Operating Circuits
(continued)

Pin Configurations

1 V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

TTIE:		
PACKAGE OUTLINE, 10L uMAX/USOP		
	$\begin{aligned} & \text { ENT Controu no } \\ & 21-0061 \end{aligned}$	I

1V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

TIP VIEW

VARIATIDNS:

INCHES		MILLIMETERS						
	MIN.	MAX.	MIN.	MAX.	PKG.			
X	.086	.106	2.19	2.69	E $16 E-9$			
Y	.080	.100	2.04	2.54				
X	.080	.100	2.04	2.54	E16E-10			
Y	.120	.140	3.05	3.55				

NDTES:

1. D \& E DD NDT INCLUDE MILD FLASH OR PROTRUSIONS.
2. MILD FLASH OR PROTRUSIONS NDT TO EXCEED . 006* PER SIDE.
3. DIMENSIDNS X AND Y APPLY $0 N L Y$ to EXPISED PAD QSUP PACKAGES.
4. CDNTROLLING DIMENSIONS: INCHES.

Revision History
Pages changed at Rev 1: 1-13, 15-18,
Title change-all pages.
Pages changed at Rev 2: 1-4, 10-12
\qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

Maxim > Products > Hot-Swap and Power Switching

MAX5924, MAX5925, MAX5926

1 V to 13.2 V , n-Channel Hot-Swap Controllers Require No Sense Resistor
QuickView Technical Documents Ordering Info More Information All

Ordering Information
Notes:

1. Other options and links for purchasing parts are listed at: http://www.maxim-ic.com/sales.
2. Didn't Find What You Need? Ask our applications engineers. Expert assistance in finding parts, usually within one business day.
3. Part number suffixes: T or $T \& R=$ tape and reel; $+=$ RoHS/lead-free; $\#=$ RoHS/lead-exempt. More: SeeFull Data Sheet or Part Naming Conventions.
4. * Some packages have variations, listed on the drawing. "PkgCode/Variation" tells which variation the product uses.

Devices: 1-36 of 36

MAX5924	Free Sample	Buy	Package: TYPE PINS FOOTPRINT DRAWING CODE/VAR *	Temp	RoHS/Lead-Free? Materials Analysis
MAX5924AEUB			uMAX;10 pin;15 mm Dwg: 21-0061J (PDF) Use pkgcode/variation: U10C-4*	-40 C to +85 C	RoHS/Lead-Free: No Materials Analysis
MAX5924AEUB+T			uMAX;10 pin;15 mm Dwg: 21-0061J (PDF) Use pkgcode/variation: U10C +4*	-40 C to +85 C	RoHS/Lead-Free: Lead Free Materials Analysis
MAX5924AEUB+			uMAX;10 pin;15 mm Dwg: 21-0061J (PDF) Use pkgcode/variation: U10C +4*	-40C to +85C	RoHS/Lead-Free: Lead Free Materials Analysis
MAX5924BEUB+			uMAX;10 pin;15 mm Dwg: 21-0061J (PDF) Use pkgcode/variation: U10C + 4*	-40 C to +85 C	RoHS/Lead-Free: Lead Free Materials Analysis
MAX5924BEUB+T			uMAX;10 pin;15 mm Dwg: 21-0061J (PDF) Use pkgcode/variation: U10C + 4*	-40 C to +85 C	RoHS/Lead-Free: Lead Free Materials Analysis
MAX5924DEUB+T			uMAX;10 pin;15 mm Dwg: 21-0061J (PDF) Use pkgcode/variation: U10C + 4*	-40 C to +85 C	RoHS/Lead-Free: Lead Free Materials Analysis
MAX5924CEUB+			uMAX;10 pin;15 mm Dwg: 21-0061J (PDF) Use pkgcode/variation: U10C + 4* *	-40 C to +85 C	RoHS/Lead-Free: Lead Free Materials Analysis
MAX5924CEUB+T			uMAX;10 pin;15 mm Dwg: 21-0061J (PDF) Use pkgcode/variation: U10C +4*	-40 C to +85 C	RoHS/Lead-Free: Lead Free Materials Analysis
MAX5924DEUB+			uMAX;10 pin;15 mm Dwg: 21-0061J (PDF) Use pkgcode/variation: U10C + 4*	-40 C to +85 C	RoHS/Lead-Free: Lead Free Materials Analysis
MAX5924DEUB-T			uMAX;10 pin;15 mm Dwg: 21-0061J (PDF) Use pkgcode/variation: U10C-4*	-40 C to +85 C	RoHS/Lead-Free: No Materials Analysis
MAX5924DEUB			uMAX;10 pin;15 mm Dwg: 21-0061J (PDF) Use pkgcode/variation: U10C-4*	-40 C to +85 C	RoHS/Lead-Free: No Materials Analysis
MAX5924CEUB-T			uMAX;10 pin;15 mm Dwg: 21-0061J (PDF) Use pkgcode/variation: U10C-4*	-40 C to +85 C	RoHS/Lead-Free: No Materials Analysis
MAX5924CEUB			uMAX;10 pin;15 mm Dwg: 21-0061J (PDF) Use pkgcode/variation: U10C-4*	-40 C to +85 C	RoHS/Lead-Free: No Materials Analysis

MAX5924BEUB-T			uMAX;10 pin;15 mm Dwg: 21-0061J (PDF) Use pkgcode/variation: U10C-4*	-40C to +85 C	RoHS/Lead-Free: No Materials Analysis
MAX5924BEUB			uMAX;10 pin;15 mm Dwg: 21-0061J (PDF) Use pkgcode/variation: U10C-4*	-40C to +85 C	RoHS/Lead-Free: No Materials Analysis
MAX5924AEUB-T			uMAX;10 pin;15 mm Dwg: 21-0061J (PDF) Use pkgcode/variation: U10C-4*	-40 C to +85 C	RoHS/Lead-Free: No Materials Analysis
M AX5925	Free Sample	Buy	Package: TYPE PINS FOOTPRINT DRAWING CODE/VAR *	Temp	RoHS/Lead-Free? Materials Analysis
MAX5925CEUB+			uMAX;10 pin;15 mm Dwg: 21-0061J (PDF) Use pkgcode/variation: U10C +4*	-40C to +85 C	RoHS/Lead-Free: Lead Free Materials Analysis
MAX5925CEUB+T			uMAX;10 pin;15 mm Dwg: 21-0061J (PDF) Use pkgcode/variation: U10C+4*	-40 C to +85C	RoHS/Lead-Free: Lead Free Materials Analysis
MAX5925DEUB+			uMAX;10 pin;15 mm Dwg: 21-0061J (PDF) Use pkgcode/variation: U10C+4*	-40C to +85 C	RoHS/Lead-Free: Lead Free Materials Analysis
MAX5925DEUB+T			uMAX;10 pin;15 mm Dwg: 21-0061J (PDF) Use pkgcode/variation: U10C +4*	-40 C to +85 C	RoHS/Lead-Free: Lead Free Materials Analysis
MAX5925BEUB+T			uMAX;10 pin;15 mm Dwg: 21-0061J (PDF) Use pkgcode/variation: U10C +4*	-40C to +85 C	RoHS/Lead-Free: Lead Free Materials Analysis
MAX5925BEUB+			uMAX;10 pin;15 mm Dwg: 21-0061J (PDF) Use pkgcode/variation: U10C +4*	-40 C to +85C	RoHS/Lead-Free: Lead Free Materials Analysis
MAX5925AEUB			uMAX;10 pin;15 mm Dwg: 21-0061J (PDF) Use pkgcode/variation: U10C-4*	-40 C to +85 C	RoHS/Lead-Free: No Materials Analysis
MAX5925AEUB-T			uMAX;10 pin;15 mm Dwg: 21-0061J (PDF) Use pkgcode/variation: U10C-4*	-40 C to +85C	RoHS/Lead-Free: No Materials Analysis
MAX5925BEUB			uMAX;10 pin;15 mm Dwg: 21-0061J (PDF) Use pkgcode/variation: U10C-4*	-40 C to +85 C	RoHS/Lead-Free: No Materials Analysis
MAX5925BEUB-T			uMAX;10 pin;15 mm Dwg: 21-0061J (PDF) Use pkgcode/variation: U10C-4*	-40 C to +85C	RoHS/Lead-Free: No Materials Analysis
MAX5925CEUB			uMAX;10 pin;15 mm Dwg: 21-0061J (PDF) Use pkgcode/variation: U10C-4*	-40C to +85 C	RoHS/Lead-Free: No Materials Analysis
MAX5925CEUB-T			uMAX;10 pin;15 mm Dwg: 21-0061J (PDF) Use pkgcode/variation: U10C-4*	-40 C to +85 C	RoHS/Lead-Free: No Materials Analysis
MAX5925DEUB			uMAX;10 pin;15 mm Dwg: 21-0061J (PDF) Use pkgcode/variation: U10C-4*	-40C to +85 C	RoHS/Lead-Free: No Materials Analysis
MAX5925DEUB-T			uMAX;10 pin;15 mm Dwg: 21-0061J (PDF) Use pkgcode/variation: U10C-4*	-40 C to +85 C	RoHS/Lead-Free: No Materials Analysis
MAX5925AEUB+			uMAX;10 pin;15 mm Dwg: 21-0061J (PDF) Use pkgcode/variation: U10C +4*	-40 C to +85 C	RoHS/Lead-Free: Lead Free Materials Analysis
MAX5925AEUB+T			uMAX;10 pin;15 mm Dwg: 21-0061J (PDF) Use pkgcode/variation: U10C +4*	-40 C to +85 C	RoHS/Lead-Free: Lead Free Materials Analysis
M AX5926	Free Sample	Buy	Package: TYPE PINS FOOTPRINT DRAWING CODE/VAR *	Temp	RoHS/Lead-Free? Materials Analysis
MAX5926EEE-T			QSOP;16 pin;31 mm Dwg: 21-0112D (PDF) Use pkgcode/variation: E16E-10*	-40C to +85 C	RoHS/Lead-Free: No Materials Analysis
MAX5926EEE			QSOP;16 pin;31 mm Dwg: 21-0112D (PDF) Use pkgcode/variation: E16E-10*	-40 C to +85C	RoHS/Lead-Free: No Materials Analysis

MAX5926EEE+	QSOP;16 pin;31 mm Dwg: 21-0112D (PDF) Use pkgcode/variation: E16E+10*	-40C to +85C	RoHS/Lead-Free: Lead Free Materials Analysis
MAX5926EEE+T	QSOP;16 pin;31 mm Dwg: 21-0112D (PDF) Use pkgcode/variation: E16E+10*	-40 C to +85 C	RoHS/Lead-Free: Lead Free Materials Analysis

Didn't Find What You Need?

- Next Day Product Selection Assistance from Applications Engineers
- Parametric Search
- Applications Help

QuickView
Description
Key Features
Applications/Uses
Key Specifications
Diagram

Ordering Info

Price and A vailability Samples
Buy Online
Package Information Lead-Free Information

More Information
Related Products
Notes and Comments
Evaluation Kits

Document Ref.: 19-3443; Rev 2; 2006-12-13
This page last modified: 2007-05-29

CONTACT US: SEND US AN EMAIL

[^0]: Selector Guide appears at end of data sheet.
 Pin Configurations appear at end of data sheet.

