

CrimzonTM ZLP32300

Z8 OTP MCU with Infrared Timers

Product Specification

PS020814-1204

ZiLOG Worldwide Headquarters • 532 Race Street • San Jose, CA 95126-3432 Telephone: 408.558.8500 • Fax: 408.558.8300 • <u>www.ZiLOG.com</u>

This publication is subject to replacement by a later edition. To determine whether a later edition exists, or to request copies of publications, contact:

ZiLOG Worldwide Headquarters 532 Race Street

San Jose, CA 95126-3432 Telephone: 408.558.8500 Fax: 408.558.8300 www.zilog.com

ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries. All other products and/or service names mentioned herein may be trademarks of the companies with which they are associated.

Document Disclaimer

©2004 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZiLOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Devices sold by ZiLOG, Inc. are covered by warranty and limitation of liability provisions appearing in the ZiLOG, Inc. Terms and Conditions of Sale. ZiLOG, Inc. makes no warranty of merchantability or fitness for any purpose. Except with the express written approval of ZiLOG, use of information, devices, or technology as critical components of life support systems is not authorized. No licenses are conveyed, implicitly or otherwise, by this document under any intellectual property rights.

Revision History

Each instance in Table 1 reflects a change to this document from its previous revision. To see more detail, click the appropriate link in the table.

Date	Revision Level	Description	Page#
December 2004	14	Changed low power consumption and current usage for STOP and HALT modes, removed mask option note, and added characterization data to Table 7.	
		Removed Preliminary designation	All

Table 1. Revision History of this Document

Crimzon[™]ZLP32300 | Product Specification

Table of Contents

Revision Historyiii
Development Features 1
General Description
Pin Description
Absolute Maximum Ratings 10
Standard Test Conditions 10
DC Characteristics
AC Characteristics
Pin Functions 15 XTAL1 Crystal 1 (Time-Based Input) 15 XTAL2 Crystal 2 (Time-Based Output) 15 Port 0 (P07–P00) 15 Port 1 (P17–P10) 16 Port 2 (P27–P20) 17 Port 3 (P37–P30) 18 RESET (Input, Active Low) 22 Functional Description 22 RAM 22 Expanded Register File 23
Register File27Stack28Timers29Counter/Timer Functional Blocks37
Expanded Register File Control Registers (0D)
Expanded Register File Control Registers (0F) 68
Standard Control Registers
Package Information
Ordering Information
Index

CrimzonTMZLP32300 Product Specification

List of Figures

Figure 1.	Functional Block Diagram	. 3
Figure 2.	Counter/Timers Diagram	. 4
Figure 3.	20-Pin PDIP/SOIC/SSOP Pin Configuration	. 5
Figure 4.	28-Pin PDIP/SOIC/SSOP Pin Configuration	. 6
Figure 5.	40-Pin PDIP Pin Configuration	. 7
Figure 6.	48-Pin SSOP Pin Configuration	. 8
Figure 7.	Test Load Diagram	10
Figure 8.	AC Timing Diagram	13
Figure 9.	Port 0 Configuration	16
Figure 10.	Port 1 Configuration	17
Figure 11.	Port 2 Configuration	18
Figure 12.	Port 3 Configuration	19
Figure 13.	Port 3 Counter/Timer Output Configuration	21
Figure 14.	Program Memory Map (32K OTP)	23
Figure 15.	Expanded Register File Architecture	25
Figure 16.	Register Pointer	26
Figure 17.	Register Pointer—Detail	28
Figure 18.	Glitch Filter Circuitry	37
Figure 19.	Transmit Mode Flowchart	38
Figure 20.	8-Bit Counter/Timer Circuits	39
Figure 21.	T8_OUT in Single-Pass Mode	40
Figure 22.	T8_OUT in Modulo-N Mode	40
Figure 23.	Demodulation Mode Count Capture Flowchart	41
Figure 24.	Demodulation Mode Flowchart	42
Figure 25.	16-Bit Counter/Timer Circuits	43
Figure 26.	T16_OUT in Single-Pass Mode	44
Figure 27.	T16_OUT in Modulo-N Mode	44
Figure 28.	Ping-Pong Mode Diagram	46
Figure 29.	Output Circuit	46
Figure 30.	Interrupt Block Diagram	48
Figure 31.	Oscillator Configuration	50
Figure 32.	Port Configuration Register (PCON) (Write Only)	52
Figure 33.	STOP Mode Recovery Register	54
Figure 34.	SCLK Circuit	55

Figure 35.	Stop Mode Recovery Source	56
Figure 36.	Stop Mode Recovery Register 2 ((0F)DH:D2–D4, D6 Write Only)	58
Figure 37.	WATCH-DOG TIMER Mode Register (Write Only)	59
Figure 38.	Resets and WDT	60
Figure 39.	TC8 Control Register ((0D)O0H: Read/Write Except Where Noted)	63
Figure 40.	T8 and T16 Common Control Functions ((0D)01H: Read/Write)	64
Figure 41.	T16 Control Register ((0D) 2H: Read/Write Except Where Noted) .	66
Figure 42.	T8/T16 Control Register (0D)03H: Read/Write (Except Where	
	Noted)	
•	Voltage Detection Register	
	Port Configuration Register (PCON)(0F)00H: Write Only)	69
Figure 45.	Stop Mode Recovery Register ((0F)0BH: D6–D0=Write Only,	70
Elevine 40	D7=Read Only)	
	Stop Mode Recovery Register 2 ((0F)0DH:D2–D4, D6 Write Only)	
-	Watch-Dog Timer Register ((0F) 0FH: Write Only)	
•	Port 2 Mode Register (F6H: Write Only)	
-	Port 3 Mode Register (F7H: Write Only)	
•	Port 0 and 1 Mode Register (F8H: Write Only)	
•	Interrupt Priority Register (F9H: Write Only)	
-	Interrupt Request Register (FAH: Read/Write)	
•	Interrupt Mask Register (FBH: Read/Write)	
•	Flag Register (FCH: Read/Write)	
-	Register Pointer (FDH: Read/Write)	
-	Stack Pointer High (FEH: Read/Write)	
•	Stack Pointer Low (FFH: Read/Write)	
-	20-Pin PDIP Package Diagram	
-	20-Pin SOIC Package Diagram	
-	20-Pin SSOP Package Diagram.	
-	28-Pin SOIC Package Diagram	
-	28-Pin PDIP Package Diagram	
-	28-Pin SSOP Package Diagram	
•	40-Pin PDIP Package Diagram	
Figure 65.	48-Pin SSOP Package Design	84

Crimzon[™]ZLP32300 | Product Specification |

List of Tables

Table 1.	Revision History of this Document iii
Table 2.	Features
Table 3.	Power Connections 3
Table 4.	20-Pin PDIP/SOIC/SSOP Pin Identification
Table 5.	28-Pin PDIP/SOIC/SSOP Pin Identification 6
Table 6.	40- and 48-Pin Configuration 8
Table 7.	Absolute Maximum Ratings 10
Table 8.	Capacitance
Table 9.	DC Characteristics 11
Table 10.	AC Characteristics 14
Table 11.	Port 3 Pin Function Summary
Table 12.	CTR0(D)00h Counter/Timer8 Control Register 30
Table 13.	CTR1(0D)01h T8 and T16 Common Functions 32
Table 14.	CTR2(D)02h: Counter/Timer16 Control Register 35
Table 15.	CTR3 (D)03h: T8/T16 Control Register 36
Table 16.	Interrupt Types, Sources, and Vectors 49
Table 17.	IRQ Register
Table 18.	SMR2(F)0Dh:Stop Mode Recovery Register 2* 55
Table 19.	Stop Mode Recovery Source 57
Table 20.	Watch-Dog Timer Time Select 60
Table 21.	EPROM Selectable Options 61

Development Features

Table 1 lists the features of ZiLOG[®]'s CrimzonTM ZLP32300 family members.

Table 1. Features

Device	OTP(KB)	RAM* (Bytes)	I/O Lines	Voltage Range	
Crimzon TM ZLP32300	8, 16, 32	237	32, 24 or 16	2.0V-3.6V	
Note: *General purpose					

- Low power consumption–6mW (typical)
- Three standby modes:
 - STOP—2µA (typical)
 - HALT-0.8mA (typical)
 - Low voltage reset
- Special architecture to automate both generation and reception of complex pulses or signals:
 - One programmable 8-bit counter/timer with two capture registers and two load registers
 - One programmable 16-bit counter/timer with one 16-bit capture register pair and one 16-bit load register pair
 - Programmable input glitch filter for pulse reception
- Six priority interrupts
 - Three external
 - Two assigned to counter/timers
 - One low-voltage detection interrupt
- Low voltage detection and high voltage detection flags
- Programmable Watch-Dog Timer/Power-On Reset (WDT/POR) circuits
- Two independent comparators with programmable interrupt polarity
- Programmable EPROM options
 - Port 0: 0–3 pull-up transistors
 - Port 0: 4–7 pull-up transistors
 - Port 1: 0–3 pull-up transistors
 - Port 1: 4–7 pull-up transistors
 - Port 2: 0–7 pull-up transistors

- EPROM Protection
 - WDT enabled at POR
- Note: The mask option pull-up transistor has a *typical* equivalent resistance of 200K Ω ±50% at V_{CC}=3 V and 450K Ω ±50% at V_{CC}=2 V.

General Description

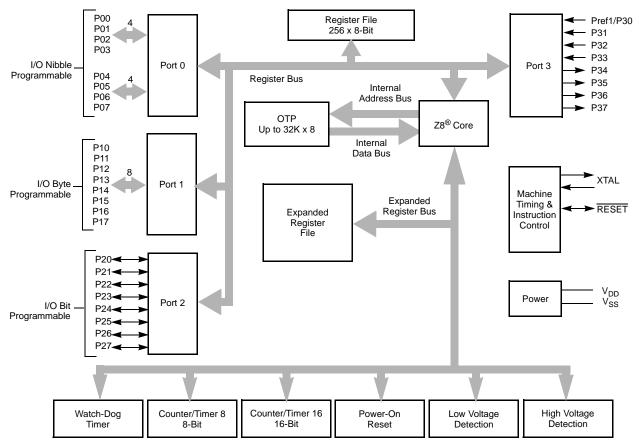
The CrimzonTM ZLP32300 is an OTP-based member of the MCU family of infrared microcontrollers. With 237B of general-purpose RAM and 8KB to 32KB of OTP, ZiLOG[®]'s CMOS microcontrollers offer fast-executing, efficient use of memory, sophisticated interrupts, input/output bit manipulation capabilities, automated pulse generation/reception, and internal key-scan pull-up transistors.

The CrimzonTM ZLP32300 architecture (Figure 1) is based on ZiLOG's 8-bit microcontroller core with an Expanded Register File allowing access to register-mapped peripherals, input/output (I/O) circuits, and powerful counter/timer circuitry. The Z8[®] CPU offers a flexible I/O scheme, an efficient register and address space structure, and a number of ancillary features that are useful in many consumer, automotive, computer peripheral, and battery-operated hand-held applications.

There are three basic address spaces available to support a wide range of configurations: Program Memory, Register File and Expanded Register File. The register file is composed of 256 Bytes (B) of RAM. It includes 4 I/O port registers, 16 control and status registers, and 236 general-purpose registers. The Expanded Register File consists of two additional register groups (F and D).

To unburden the program from coping with such real-time problems as generating complex waveforms or receiving and demodulating complex waveform/pulses, the CrimzonTM ZLP32300 offers a new intelligent counter/timer architecture with 8-bit and 16-bit counter/timers (see Figure 2). Also included are a large number of user-selectable modes and two on-board comparators to process analog signals with separate reference voltages.

Note: All signals with an overline, "—", are active Low. For example, B/W, in which WORD is active Low, and B/W, in which BYTE is active Low.


Power connections use the conventional descriptions listed in Table 2.

>

Table 2. Power Connections

Connection	Circuit	Device	
Power	V _{CC}	V _{DD}	
Ground	GND	V _{SS}	

Note: Refer to the specific package for available pins.

Figure 1. Functional Block Diagram

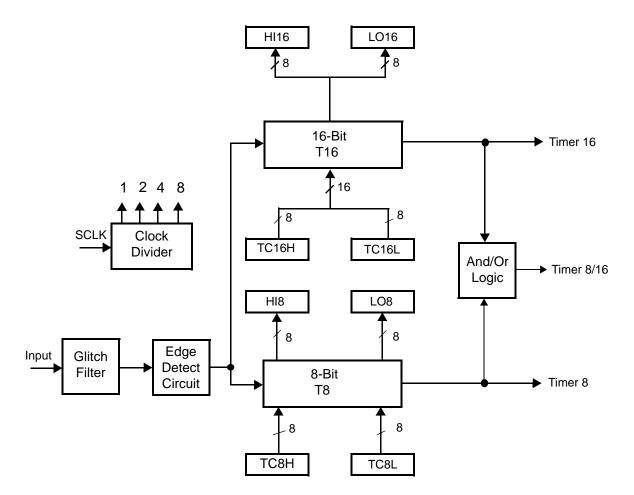
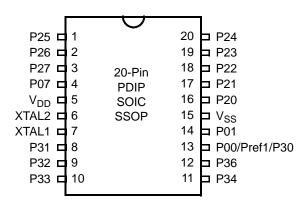



Figure 2. Counter/Timers Diagram

Pin Description

The pin configuration for the 20-pin PDIP/SOIC/SSOP is illustrated in Figure 3 and described in Table 3. The pin configuration for the 28-pin PDIP/SOIC/SSOP are depicted in Figure 4 and described in Table 4. The pin configurations for the 40-pin PDIP and 48-pin SSOP versions are illustrated in Figure 5, Figure 6, and described in Table 5.

Figure 3. 20-Pin PDIP/SOIC/SSOP Pin Configuration

Table 3.	20-Pin PDIP/SOIC/SSOP Pin Identification

Pin #	Symbol	Function	Direction
1–3	P25–P27	Port 2, Bits 5,6,7	Input/Output
4	P07	Port 0, Bit 7	Input/Output
5	V _{DD}	Power Supply	
6	XTAL2	Crystal Oscillator Clock	Output
7	XTAL1	Crystal Oscillator Clock	Input
8–10	P31–P33	Port 3, Bits 1,2,3	Input
11,12	P34, P36	Port 3, Bits 4,6	Output
13	P00/Pref1/P30	Port 0, Bit 0/Analog reference input Port 3 Bit 0	Input/Output for P00 Input for Pref1/P30
14	P01	Port 0, Bit 1	Input/Output
15	V _{SS}	Ground	
16–20	P20–P24	Port 2, Bits 0,1,2,3,4	Input/Output

P25 🗖	1	\bigcirc	28	□ P24
P26□	•		20	D P23
P27 🗖	3		26	□ P22
P04 🗖	4		25	🗆 P21
P05 🗖	5		24	□ P20
P06 🗖	6	28-Pin	23	□ P03
P07 🗖	7	PDIP	22	⊐ v _{ss}
V _{DD} ⊏	8	SOIC SSOP	21	□ P02
XTAL2	9	330F	20	□ P01
XTAL1	10		19	口 P00
P31 🗖	11		18	Pref1/P30
P32 🗖	12		17	□ P36
P33 🗖	13		16	□P37
P34 🗖	14		15	🗆 P35

Pin	Symbol	Direction	Description
1-3	P25-P27	Input/Output	Port 2, Bits 5, 6, 7
4-7	P04-P07	Input/Output	Port 0, Bits 4, 5, 6, 7
8	V _{DD}		Power supply
9	XTAL2	Output	Crystal, oscillator clock
10	XTAL1	Input	Crystal, oscillator clock
11-13	P31-P33	Input	Port 3, Bits 1, 2, 3
14	P34	Output	Port 3, Bit 4
15	P35	Output	Port 3, Bit 5
16	P37	Output	Port 3, Bit 7
17	P36	Output	Port 3, Bit 6
18	Pref1/P30	Input	Analog ref input; connect to V _{CC} if not used
	Port 3 Bit 0		Input for Pref1/P30
19-21	P00-P02	Input/Output	Port 0, Bits 0, 1, 2
22	V _{SS}		Ground
23	P03	Input/Output	Port 0, Bit 3
24-28	P20-P24	Input/Output	Port 2, Bits 0–4

ZILOG

r				
	4	\bigcirc	40	
NC 🗖	1		40	
P25 🗆	2		39	⊐ P24
P26 🗖	3		38	□ P23
P27 🗖	4		37	🗖 P22
P04 🗖	5		36	🗆 P21
P05 🗖	6		35	⊐ P20
P06 🗖	7		34	⊐ P03
P14 🗖	8		33	🗆 P13
P15 🗖	9		32	🗖 P12
P07 🗖	10	40-Pin	31	⊐ VSS
VDD 🗖	11	PDIP	30	□ P02
P16 ⊏	12		39	⊐ P11
P17 🗖	13		28	🗆 P10
XTAL2	14		27	□ P01
XTAL1	15		26	□ P00
P31 🗖	16		25	□ Pref1/P30
P32 □	17		24	□ P36
P33 🗖	18		23	□ P37
P34 🗖	19		22	- P35
	20		21	
	20		21	

Figure 5. 40-Pin PDIP Pin Configuration

	I				
		1	\bigcirc	40	NO
NC		-		48	NC
P25		2		47 🗖	NC
P26		3		46 🗆	P24
P27		4		45 🗆	P23
P04		5		44 🗖	P22
N/C		6		43 🗆	P21
P05	C	7		42 🗆	P20
P06		8		41	P03
P14		9		40 🗆	P13
P15		10		39 🗆	P12
P07		11	10 D'	38 🗖	VSS
VDD		12	48-Pin	37 🗖	VSS
VDD		13	SSOP	36 🗆	N/C
N/C		14		35 🗆	P02
P16		15		34 🗖	P11
P17		16		33 🗖	P10
XTAL2		17		32 🗖	P01
XTAL1		18		31 🗖	P00
P31		19		30 🗖	N/C
P32		20		29 🗖	PREF1/P30
P33	С	21		28 🗖	P36
P34		22		27	P37
NC		23		26 🗖	P35
VSS	٩	24		25 🗆	RESET

Figure 6. 48-Pin SSOP Pin Configuration

Table 5. 40- and 48-Pin Configuration

40-Pin PDIP #	48-Pin SSOP #	Symbol
26	31	P00
27	32	P01
30	35	P02
34	41	P03
5	5	P04
6	7	P05
7	8	P06
10	11	P07
28	33	P10
29	34	P11
32	39	P12

Crimzon[™]ZLP32300 | Product Specification

40-Pin PDIP #	48-Pin SSOP #	Symbol
33	40	P13
8	9	P14
9	10	P15
12	15	P16
13	16	P17
35	42	P20
36	43	P21
37	44	P22
38	45	P23
39	46	P24
2	2	P25
3	3	P26
4	4	P27
16	19	P31
17	20	P32
18	21	P33
19	22	P34
22	26	P35
24	28	P36
23	27	P37
20	23	NC
40	47	NC
1	1	NC
21	25	RESET
15	18	XTAL1
14	17	XTAL2
11	12, 13	V _{DD}
31	24, 37, 38	V _{SS}
25	29	Pref1/P30
	48	NC
	6	NC
	14	NC
	30	NC
	36	NC

Table 5. 40- and 48-Pin Configuration (Continued)

Absolute Maximum Ratings

Stresses greater than those listed in Table 7 might cause permanent damage to the device. This rating is a stress rating only. Functional operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period might affect device reliability.

Table 6. Absolute Maximum Ratings

Minimum	Maximu	m Units	Notes
0	+70	С	
-65	+150	С	
-0.3	+5.5	V	1
-0.3	+3.6	V	
-5	+5	μA	
-25	+25	mA	
	75	mA	
_	0 65 0.3 0.3 5	$\begin{array}{c cccc} 0 & +70 \\ -65 & +150 \\ \hline -0.3 & +5.5 \\ \hline -0.3 & +3.6 \\ \hline -5 & +5 \\ \hline -25 & +25 \end{array}$	0 +70 C -65 +150 C -0.3 +5.5 V -0.3 +3.6 V -5 +5 μA -25 +25 mA

Standard Test Conditions

The characteristics listed in this product specification apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (see Figure 7).

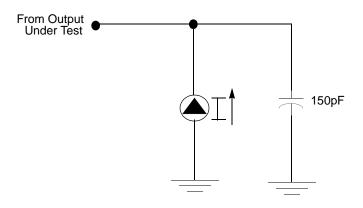


Figure 7. Test Load Diagram

Capacitance

Table 7 lists the capacitances.

Table 7. Capacitance

Parameter	Maximum			
Input capacitance	12pF			
Output capacitance	12pF			
I/O capacitance	12pF			
Note: $T_A = 25^{\circ}$ C, $V_{CC} = GND = 0$ V, f = 1.0 MHz, unmeasured pins returned to GND				

DC Characteristics

			T _A = 0°C	to +7	′0°C			
Symbol	Parameter	V _{CC}	Min	Тур	Max	Units	Conditions	Notes
V _{CC}	Supply Voltage		2.0		3.6	V	See Notes	5
V _{CH}	Clock Input High Voltage	2.0-3.6	0.8 V _{CC}		V _{CC} +0.3	V	Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage	2.0-3.6	V _{SS} -0.3		0.5	V	Driven by External Clock Generator	
V _{IH}	Input High Voltage	2.0-3.6	0.7 V _{CC}		V _{CC} +0.3	V		
V _{IL}	Input Low Voltage	2.0-3.6	V _{SS} 0.3		0.2 V _{CC}	V		
V _{OH1}	Output High Voltage	2.0-3.6	V _{CC} -0.4			V	I _{OH} = -0.5mA	
V _{OH2}	Output High Voltage (P36, P37, P00, P01)	2.0-3.6	V _{CC} -0.8			V	I _{OH} = -7mA	
V _{OL1}	Output Low Voltage	2.0-3.6			0.4	V	$I_{OL} = 4.0 \text{mA}$	
V _{OL2}	Output Low Voltage (P00, P01, P36, P37)	2.0-3.6			0.8	V	I _{OL} = 10mA	
V _{OFFSET}	Comparator Input Offset Voltage	2.0-3.6			25	mV		
V _{REF}	Comparator Reference Voltage	2.0-3.6	0		V _{DD} -1.75	V		
IIL	Input Leakage	2.0-3.6	-1		1	μΑ	V _{IN} = 0V, V _{CC} Pull-ups disabled	
IOL	Output Leakage	2.0-3.6	-1		1	μΑ	$V_{IN} = 0V, V_{CC}$	
ICC	Supply Current	2.0 3.6			10 15	mA mA	at 8.0 MHz at 8.0 MHz	1, 2 1, 2

12

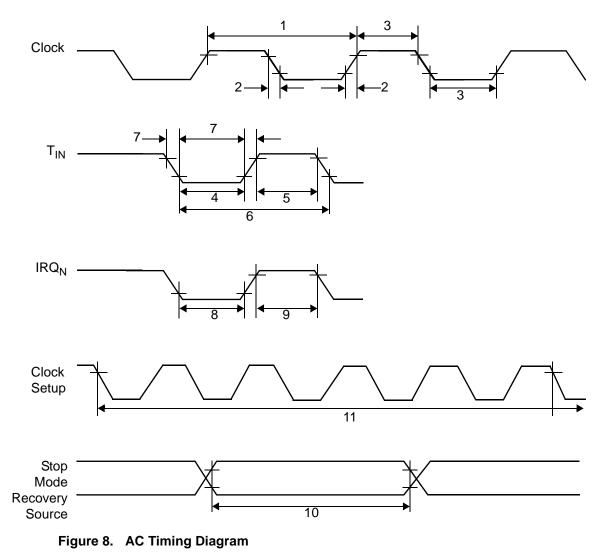
			T _A = 0°	C to +7	0°C			
Symbol	Parameter	V _{CC}	Min	Тур	Max	Units	Conditions	Notes
I _{CC1}	Standby Current	2.0			3	mA	V _{IN} = 0V, V _{CC} at 8.0MHz	1, 2
	(HALT Mode)	3.6			5		Same as above	1, 2
		2.0			2		Clock Divide-by-16 at 8.0MHz	1, 2
		3.6			4		Same as above	1, 2
I _{CC2}	Standby Current (Stop	2.0			8	μΑ	V _{IN} = 0 V, V _{CC} WDT is not Running	3
	Mode)	3.6			10	μΑ	Same as above	3
		2.0			500	μΑ	V _{IN} = 0 V, V _{CC} WDT is Running	3
		3.6			800	μA	Same as above	3
I _{LV}	Standby Current (Low Voltage)				10	μΑ	Measured at 1.3V	4
V _{BO}	V _{CC} Low Voltage				2.0	V	8MHz maximum	
20	Protection						Ext. CLK Freq.	
V _{LVD}	Vcc Low Voltage			2.4		V		
	Detection							
V _{HVD}	Vcc High Voltage			2.7		V		
	Detection							
Notos								

Table 8. DC Characteristics (Continued)

Notes:

1. All outputs unloaded, inputs at rail.

2. CL1 = CL2 = 100 pF.


3. Oscillator stopped.

4. Oscillator stops when V_{CC} falls below V_{BO} limit. 5. It is strongly recommended to add a filter capacitor (minimum 0.1µF), physically close to VDD and V_{SS} pins if operating voltage fluctuations are anticpated, such as those resulting from driving an infrared LED.

AC Characteristics

Figure 8 and Table 9 describe the Alternating Current (AC) characteristics.

				Watch-Dog Timer Mode				
No	Symbol	Parameter	v _{cc}	Minimum	Maximum	Units	Notes	Register (D1, D0)
1	ТрС	Input Clock Period	2.0–3.6	121	DC	ns	1	
2	TrC,TfC	Clock Input Rise and Fall Times	2.0–3.6		25	ns	1	
3	TwC	Input Clock Width	2.0–3.6	37		ns	1	
4	TwTinL	Timer Input Low Width	2.0 3.6	100 70		ns	1	
5	TwTinH	Timer Input High Width	2.0–3.6	3ТрС			1	
6	TpTin	Timer Input Period	2.0–3.6	8TpC			1	
7	TrTin,TfTin	Timer Input Rise and Fall Timers	2.0–3.6		100	ns	1	
8	TwIL	Interrupt Request Low Time	2.0 3.6	100 70		ns	1, 2	
9	TwIH	Interrupt Request Input High Time	2.0–3.6	5TpC			1, 2	
10	Twsm	Stop-Mode Recovery Width	2.0–3.6	12		ns	3	
		Spec		10TpC			4	
11	Tost	Oscillator Start-Up Time	2.0–3.6		5TpC		4	
12	Twdt	Watch-Dog Timer	2.0–3.6	5		ms		0, 0
		Delay Time	2.0–3.6	10		ms		0, 1
			2.0–3.6	20		ms		1, 0
			2.0–3.6	80		ms		1, 1
13	T _{POR}	Power-On Reset	2.0–3.6	2.5	10	ms		

Table 9. AC Characteristics

Notes:

1. Timing Reference uses 0.9 V_{CC} for a logic 1 and 0.1 V_{CC} for a logic 0. 2. Interrupt request through Port 3 (P33–P31).

3. SMR – D5 = 1.

4. SMR - D5 = 0.

Pin Functions

XTAL1 Crystal 1 (Time-Based Input)

This pin connects a parallel-resonant crystal or ceramic resonator to the on-chip oscillator input. Additionally, an optional external single-phase clock can be coded to the on-chip oscillator input.

XTAL2 Crystal 2 (Time-Based Output)

This pin connects a parallel-resonant crystal or ceramic resonant to the on-chip oscillator output.

Port 0 (P07-P00)

Port 0 is an 8-bit, bidirectional, CMOS-compatible port. These eight I/O lines are configured under software control as a nibble I/O port. The output drivers are push-pull or open-drain controlled by bit D2 in the PCON register.

If one or both nibbles are needed for I/O operation, they must be configured by writing to the Port 01 mode register (P01M). After a hardware reset or Stop Mode recovery, Port 0 is configured as an input port.

An optional pull-up transistor is available as a OTP option bit on all Port 0 bits with nibble select.

Notes: Internal pull-ups are disabled on any given pin or group of port pins when programmed into output mode.

The Port 0 direction is reset to be input following an SMR.

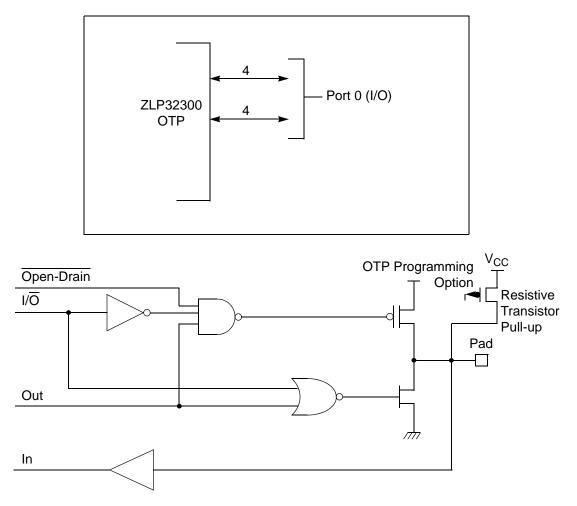


Figure 9. Port 0 Configuration

Port 1 (P17–P10)

Port 1 (see Figure 10) Port 1 can be configured for standard port input or output mode. After POR or stop mode recovery, Port 1 is configured as an input port. The output drivers are either push-pull or open-drain and are controlled by bit D1 in the PCON register.

Note: The Port 1 direction is reset to be input following an SMR.

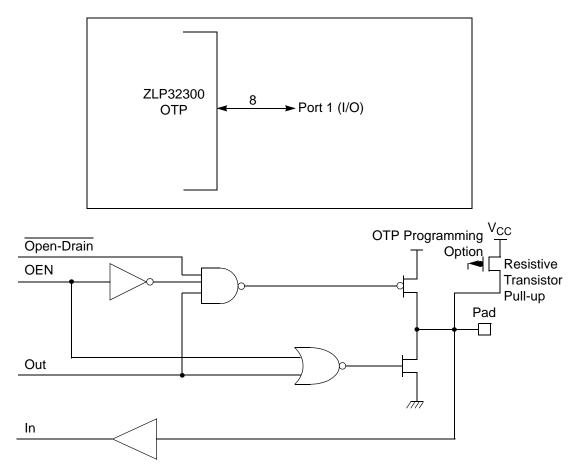


Figure 10. Port 1 Configuration

Port 2 (P27-P20)

Port 2 is an 8-bit, bidirectional, CMOS-compatible I/O port (see Figure 11). These eight I/O lines can be independently configured under software control as inputs or outputs. Port 2 is always available for I/O operation. A EPROM option bit is available to connect eight pull-up transistors on this port. Bits programmed as outputs are globally programmed as either push-pull or open-drain. The POR resets with the eight bits of Port 2 configured as inputs.

Port 2 also has an 8-bit input OR and AND gate, which can be used to wake up the part. P20 can be programmed to access the edge-detection circuitry in demodulation mode.

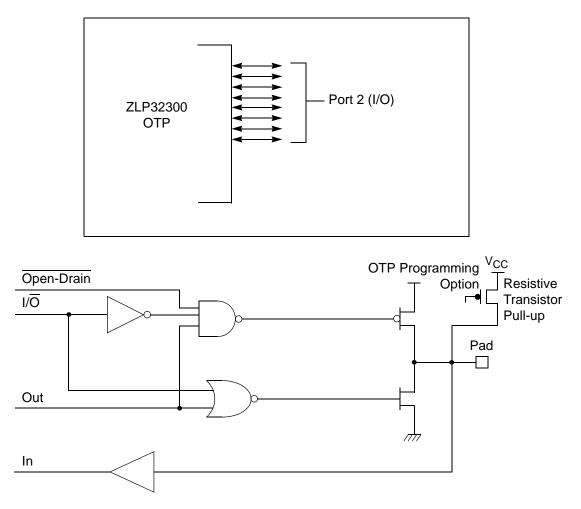
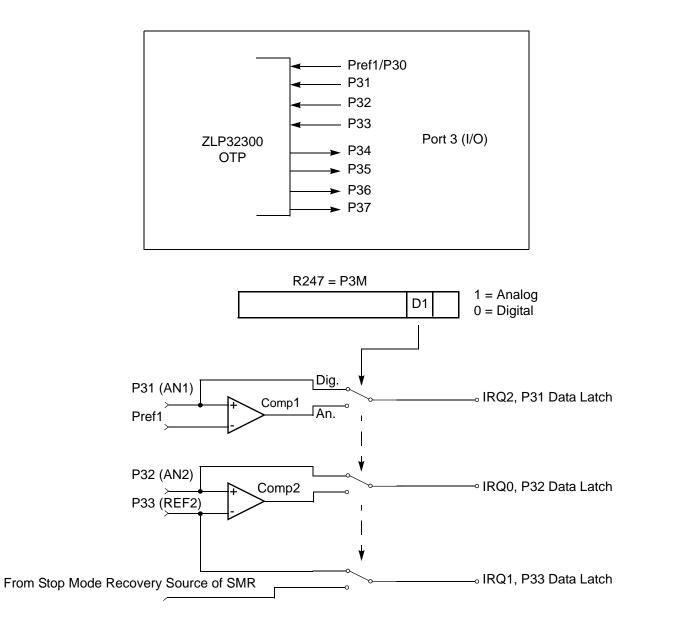



Figure 11. Port 2 Configuration

Port 3 (P37–P30)

Port 3 is a 8-bit, CMOS-compatible fixed I/O port (see Figure 12). Port 3 consists of four fixed input (P33–P30) and four fixed output (P37–P34), which can be configured under software control for interrupt and as output from the counter/timers. P30, P31, P32, and P33 are standard CMOS inputs; P34, P35, P36, and P37 are push-pull outputs.

Figure 12. Port 3 Configuration

Two on-board comparators process analog signals on P31 and P32, with reference to the voltage on Pref1 and P33. The analog function is enabled by programming the Port 3 Mode Register (bit 1). P31 and P32 are programmable as rising, falling, or both edge triggered interrupts (IRQ register bits 6 and 7). Pref1 and P33 are the comparator reference voltage inputs. Access to the Counter Timer edgedetection circuit is through P31 or P20 (see "T8 and T16 Common Functions—

CTR1(0D)01h" on page 32). Other edge detect and IRQ modes are described in Table 10.

Note: Comparators are powered down by entering Stop Mode. For P31–P33 to be used in a Stop Mode Recovery (SMR) source, these inputs must be placed into digital mode.

Pin	I/O	Counter/Timers	Comparator	Interrupt
Pref1/P30	IN		RF1	
P31	IN	IN	AN1	IRQ2
P32	IN		AN2	IRQ0
P33	IN		RF2	IRQ1
P34	OUT	Т8	AO1	
P35	OUT	T16		
P36	OUT	T8/16		
P37	OUT		AO2	
P20	I/O	IN		

Table 10. Port 3 Pin Function Summary

>

Port 3 also provides output for each of the counter/timers and the AND/OR Logic (see Figure 13). Control is performed by programming bits D5–D4 of CTR1, bit 0 of CTR0, and bit 0 of CTR2.

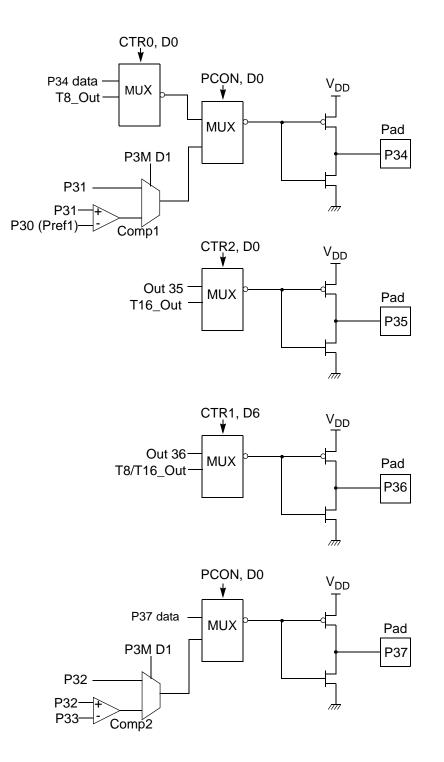


Figure 13. Port 3 Counter/Timer Output Configuration

Comparator Inputs

In analog mode, P31 and P32 have a comparator front end. The comparator reference is supplied to P33 and Pref1. In this mode, the P33 internal data latch and its corresponding IRQ1 are diverted to the SMR sources (excluding P31, P32, and P33) as indicated in Figure 12 on page 19. In digital mode, P33 is used as D3 of the Port 3 input register, which then generates IRQ1.

Note: Comparators are powered down by entering Stop Mode. For P31–P33 to be used in a Stop Mode Recovery source, these inputs must be placed into digital mode.

Comparator Outputs

These channels can be programmed to be output on P34 and P37 through the PCON register.

RESET (Input, Active Low)

Reset initializes the MCU and is accomplished either through Power-On, Watch-Dog Timer, Stop Mode Recovery, Low-Voltage detection, or external reset. During Power-On Reset and Watch-Dog Timer Reset, the internally generated reset drives the reset pin Low for the POR time. Any devices driving the external reset line must be open-drain to avoid damage from a possible conflict during reset conditions. Pull-up is provided internally.

When the ZLP32300 asserts (Low) the RESET pin, the internal pull-up is disabled. The ZLP32300 does not assert the RESET pin when under VBO.

Note: The external Reset does not initiate an exit from STOP mode.

Functional Description

This device incorporates special functions to enhance the Z8[®], functionality in consumer and battery-operated applications.

Program Memory

This device addresses 32KB of OTP memory. The first 12 Bytes are reserved for interrupt vectors. These locations contain the six 16-bit vectors that correspond to the six available interrupts. See Figure 14.

RAM

This device features 256B of RAM.

Crimzon[™]ZLP32300 Product Specification

		Not Accessible
	2768	
first Byte of instruction		On-Chip ROM
executed		IXOM
after RESET	12	Reset Start Address
	11	IRQ5
	10	IRQ5
	9	IRQ4
	8	IRQ4
	7	15.00
Interrupt Vector	'	IRQ3
(Lower Byte)	6	IRQ3
	5	IRQ2
	4	➡ IRQ2
Interrupt Vector (Upper Byte)	3	IRQ1
	2	IRQ1
	1	IRQ0
	0	IRQ0

Figure 14. Program Memory Map (32K OTP)

Expanded Register File

The register file has been expanded to allow for additional system control registers and for mapping of additional peripheral devices into the register address area. The Z8[®] register address space (R0 through R15) has been implemented as 16 banks, with 16 registers per bank. These register groups are known as the

ERF (Expanded Register File). Bits 7–4 of register RP select the working register group. Bits 3–0 of register RP select the expanded register file bank.

>

Note: An expanded register bank is also referred to as an expanded register group (see Figure 15).

CrimzonTMZLP32300 Product Specification

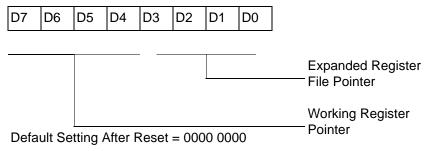

Z8 [®] Standard Co	ntrol Registers	Reset Condition
	Expanded Reg. Bank 0/Group 15	** D7 D6 D5 D4 D3 D2 D1 D0
	FE SPH	
	FE SPH	
Register Pointer		0000000000
7 6 5 4 3 2 1 0	FC FLAGS	
	FB IMR	
Working Register Expanded Register	FA IRQ	0 0 0 0 0 0 0 0
Group Pointer Bank Pointer	F9 IPR	
	F8 P01M	1 1 0 0 1 1 1 1
	* F7 P3M	0 0 0 0 0 0 0 0
	* F6 P2M	
	F5 Reserved F4 Reserved	
	F3 Reserved F2 Reserved	
Register File (Bank 0)**		
FF F0		
	F0 Reserved	
	Expanded Reg. Bank F/Group 0*	*
	(F) OF WDTMR	
	(F) 0E Reserved	
	* (F) 0D SMR2	
	(F) 0C Reserved	
	↑ (F) 0B SMR	
7F	(F) 0A Reserved	
	(F) 09 Reserved	
	(F) 08 Reserved	╢╫╫╫╫╫╢
	(F) 07 Reserved	
	(F) 06 Reserved	╢╫╫╫╫╫╢
	(F) 05 Reserved	
	(F) 04 Reserved	
	(F) 03 Reserved	
	(F) 02 Reserved	
	(F) 01 Reserved	$\{ \left \begin{array}{c} + + + + + + + \\ - + + + + + + + \\ - + + + +$
Europeded Deg. Bank 0/Croup (0)	(F) 00 PCON	
Expanded Reg. Bank 0/Group (0) (0) 03 P3 0 U	Expanded Reg. Bank D/Group 0] [.] .] .] .] .] .] .] .] .]
	(D) 0C LVD	U U U U U U U 0
(0) 02 P2 U	* (D) 0B HI8	00000000
* (0) 01 P1 U	* (D) 0A LO8	000000000
(a) an Po	* (D) 09 HI16	000000000
(0) 00 P0 U	* (D) 08 LO16	0 0 0 0 0 0 0 0
U = Unknown	* (D) 07 TC16H	0 0 0 0 0 0 0 0
* Is not reset with a Stop-Mode Recovery	* (D) 06 TC16L	0 0 0 0 0 0 0 0
** All addresses are in hexadecimal	* (D) 05 TC8H	0000000000
\uparrow Is not reset with a Stop-Mode Recovery, except Bit 0	* (D) 04 TC8L	0 0 0 0 0 0 0 0
↑↑ Bit 5 Is not reset with a Stop-Mode Recovery	111 (D) 03 CTR3	0 0 0 1 1 1 1 1
↑↑↑ Bits 5,4,3,2 not reset with a Stop-Mode Recovery	↑↑↑ (D) 02 CTR2	0 0 0 0 0 0 0 0
↑↑↑↑ Bits 5 and 4 not reset with a Stop-Mode Recovery	^{↑↑↑↑} (D) 01 CTR1	0 0 0 0 0 0 0 0
↑↑↑↑↑ Bits 5,4,3,2,1 not reset with a Stop-Mode Recovery	↑↑↑↑↑\ (D) 00 CTR0	000000000

Figure 15. Expanded Register File Architecture

The upper nibble of the register pointer (see Figure 16) selects which working register group, of 16 bytes in the register file, is accessed out of the possible 256. The lower nibble selects the expanded register file bank and, in the case of the CrimzonTM ZLP32300 family, banks 0, F, and D are implemented. A 0h in the lower nibble allows the normal register file (bank 0) to be addressed. Any other value from 1h to Fh exchanges the lower 16 registers to an expanded register bank.

R253 RP

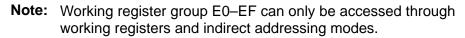
Figure 16. Register Pointer

Example: Crimzon[™] ZLP32300: (See Figure 15 on page 25)

R253 RP = 00h R0 = Port 0 R1 = Port 1 R2 = Port 2 R3 = Port 3

But if:

R253 RP = 0Dh R0 = CTR0 R1 = CTR1 R2 = CTR2 R3 = CTR3


The counter/timers are mapped into ERF group D. Access is easily performed using the following:

LD	RP, #0Dh	;	Select ERF D
for access to bank D			
		;	(working
register group 0)			
LD	R0,#xx	;	load CTR0
LD	1, #xx	;	load CTR1
LD	R1, 2	;	CTR2→CTR1
LD	RP, #0Dh	;	Select ERF D
for access to bank D		'	
		;	(working
register group 0)			
LD	RP, #7Dh	;	Select
expanded register bank	D and working	;	register
group 7 of bank 0 for a	ccess.		
LD	71h, 2		
; CTRL2 \rightarrow register 71h			
LD	R1, 2		
; CTRL2 \rightarrow register 71h			

Register File

>

The register file (bank 0) consists of 4 I/O port registers, 237 general-purpose registers, 16 control and status registers (R0–R3, R4–R239, and R240–R255, respectively), and two expanded registers groups in Banks D (see Table 11) and F. Instructions can access registers directly or indirectly through an 8-bit address field, thereby allowing a short, 4-bit register address to use the Register Pointer (Figure 17). In the 4-bit mode, the register file is divided into 16 working register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working register group.

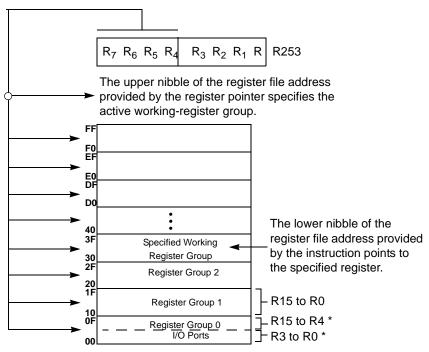


Figure 17. Register Pointer—Detail

Stack

The internal register file is used for the stack. An 8-bit Stack Pointer SPL (R255) is used for the internal stack that resides in the general-purpose registers (R4–R239). SPH (R254) can be used as a general-purpose register.

Timers

T8_Capture_HI—HI8(D)0Bh

This register holds the captured data from the output of the 8-bit Counter/Timer0. Typically, this register holds the number of counts when the input signal is 1.

Field	Bit Position		Description	
T8_Capture_HI	[7:0]	R/W	Captured Data - No Effect	

T8_Capture_LO—L08(D)0Ah

This register holds the captured data from the output of the 8-bit Counter/Timer0. Typically, this register holds the number of counts when the input signal is 0.

Field	Bit Position		Description	
T8_Capture_L0	[7:0]	R/W	Captured Data - No Effect	

T16_Capture_HI—HI16(D)09h

This register holds the captured data from the output of the 16-bit Counter/ Timer16. This register holds the MS-Byte of the data.

Field	Bit Position		Description	
T16_Capture_HI	[7:0]	R/W	Captured Data - No Effect	

T16_Capture_LO—L016(D)08h

This register holds the captured data from the output of the 16-bit Counter/ Timer16. This register holds the LS-Byte of the data.

Field	Bit Position	Description
T16_Capture_LO	[7:0]	R/W Captured Data - No Effect

Counter/Timer2 MS-Byte Hold Register—TC16H(D)07h

Field Bit Position			Description
T16_Data_HI	[7:0]	R/W	Data

Counter/Timer2 LS-Byte Hold Register—TC16L(D)06h

Field	Bit Position		Description
T16_Data_LO	[7:0]	R/W	Data

Counter/Timer8 High Hold Register—TC8H(D)05h

Field	Bit Position		Description
T8_Level_HI	[7:0]	R/W	Data

Counter/Timer8 Low Hold Register—TC8L(D)04h

Field	Bit Position		Description
T8_Level_LO	[7:0]	R/W	Data

CTR0 Counter/Timer8 Control Register—CTR0(D)00h

Table 11 lists and briefly describes the fields for this register.

Field	Bit Position		Value	Description
T8_Enable	7	R/W	0*	Counter Disabled
			1	Counter Enabled
			0	Stop Counter
			1	Enable Counter
Single/Modulo-N	-6	R/W	0*	Modulo-N
			1	Single Pass
Time_Out	5	R/W	0**	No Counter Time-Out
			1	Counter Time-Out Occurred
			0	No Effect
			1	Reset Flag to 0
T8 _Clock	43	R/W	0 0**	SCLK
			0 1	SCLK/2
			10	SCLK/4
			11	SCLK/8
Capture_INT_Mask	2	R/W	0**	Disable Data Capture Interrupt
			1	Enable Data Capture Interrupt

Table 11. CTR0(D)00h Counter/Timer8 Control Register (Continued)

Field	Bit Position		Value	Description
Counter_INT_Mask	1-	R/W	0** 1	Disable Time-Out Interrupt Enable Time-Out Interrupt
P34_Out	0	R/W	0* 1	P34 as Port Output T8 Output on P34

Note:

*Indicates the value upon Power-On Reset.

** Indicates the value upon Power -On Reset. Not reset with a Stop Mode recovery.

T8 Enable

This field enables T8 when set (written) to 1.

Single/Modulo-N

When set to 0 (Modulo-N), the counter reloads the initial value when the terminal count is reached. When set to 1 (single-pass), the counter stops when the terminal count is reached.

Timeout

This bit is set when T8 times out (terminal count reached). To reset this bit, write a 1 to its location.

Caution: Writing a 1 is the only way to reset the Terminal Count status condition. Reset this bit before using/enabling the counter/timers.

The first clock of T8 might not have complete clock width and can occur any time when enabled.

Note: Take care when using the OR or AND commands to manipulate CTR0, bit 5 and CTR1, bits 0 and 1 (Demodulation Mode). These instructions use a Read-Modify-Write sequence in which the current status from the CTR0 and CTR1 registers is ORed or ANDed with the designated value and then written back into the registers.

T8 Clock

These bits define the frequency of the input signal to T8.

Capture_INT_Mask

Set this bit to allow an interrupt when data is captured into either LO8 or HI8 upon a positive or negative edge detection in demodulation mode.

Counter_INT_Mask

Set this bit to allow an interrupt when T8 has a timeout.

P34_Out

This bit defines whether P34 is used as a normal output pin or the T8 output.

T8 and T16 Common Functions—CTR1(0D)01h

This register controls the functions in common with the T8 and T16.

Table 12 lists and briefly describes the fields for this register.

Field	Bit Position		Value	Description
Mode	7	R/W	0*	Transmit Mode
			1	Demodulation Mode
P36_Out/	-6	R/W		Transmit Mode
Demodulator_Input			0*	Port Output
-			1	T8/T16 Output
				Demodulation Mode
			0*	P31
			1	P20
T8/T16_Logic/	54	R/W		Transmit Mode
Edge _Detect			00**	AND
-			01	OR
			10	NOR
			11	NAND
				Demodulation Mode
			00**	Falling Edge
			01	Rising Edge
			10	Both Edges
			11	Reserved

Table 12. CTR1(0D)01h T8 and T16 Common Functions

33

Field	Bit Position		Value	Description
Transmit_Submode/	32	R/W		Transmit Mode
Glitch_Filter			00*	Normal Operation
			01	Ping-Pong Mode
			10	$T16_Out = 0$
			11	T16_Out = 1
				Demodulation Mode
			00*	No Filter
			01	4 SCLK Cycle
			10	8 SCLK Cycle
			11	Reserved
Initial_T8_Out/	1-			Transmit Mode
Rising Edge		R/W	0*	T8_OUT is 0 Initially
			1	T8_OUT is 1 Initially
				Demodulation Mode
		R	0*	No Rising Edge
			1	Rising Edge Detected
		W	0	No Effect
			1	Reset Flag to 0
Initial_T16_Out/	0			Transmit Mode
Falling_Edge		R/W	0*	T16_OUT is 0 Initially
			1	T16_OUT is 1 Initially
				Demodulation Mode
		R	0*	No Falling Edge
			1	Falling Edge Detected
		W	0	No Effect
			1	Reset Flag to 0

Table 12.CTR1(0D)01h T8 and T16 Common Functions (Continued)

Note:

*Default at Power-On Reset

**Default at Power-On Reset. Not reset with a Stop Mode recovery.

Mode

If the result is 0, the counter/timers are in TRANSMIT mode; otherwise, they are in DEMODULATION mode.

P36_Out/Demodulator_Input

In TRANSMIT Mode, this bit defines whether P36 is used as a normal output pin or the combined output of T8 and T16.

In DEMODULATION Mode, this bit defines whether the input signal to the Counter/Timers is from P20 or P31.

If the input signal is from Port 31, a capture event may also generate an IRQ2 interrupt. To prevent generating an IRQ2, either disable the IRQ2 interrupt by clearing its IMR bit D2 or use P20 as the input.

T8/T16_Logic/Edge _Detect

In TRANSMIT Mode, this field defines how the outputs of T8 and T16 are combined (AND, OR, NOR, NAND).

In DEMODULATION Mode, this field defines which edge should be detected by the edge detector.

Transmit_Submode/Glitch Filter

In Transmit Mode, this field defines whether T8 and T16 are in the PING-PONG mode or in independent normal operation mode. Setting this field to "NORMAL OPERATION Mode" terminates the "PING-PONG Mode" operation. When set to 10, T16 is immediately forced to a 0; a setting of 11 forces T16 to output a 1.

In DEMODULATION Mode, this field defines the width of the glitch that must be filtered out.

Initial_T8_Out/Rising_Edge

In TRANSMIT Mode, if 0, the output of T8 is set to 0 when it starts to count. If 1, the output of T8 is set to 1 when it starts to count. When the counter is not enabled and this bit is set to 1 or 0, T8_OUT is set to the opposite state of this bit. This ensures that when the clock is enabled, a transition occurs to the initial state set by CTR1, D1.

In DEMODULATION Mode, this bit is set to 1 when a rising edge is detected in the input signal. In order to reset the mode, a 1 should be written to this location.

Initial_T16 Out/Falling _Edge

In TRANSMIT Mode, if it is 0, the output of T16 is set to 0 when it starts to count. If it is 1, the output of T16 is set to 1 when it starts to count. This bit is effective only in Normal or PING-PONG Mode (CTR1, D3; D2). When the counter is not enabled and this bit is set, T16_OUT is set to the opposite state of this bit. This ensures that when the clock is enabled, a transition occurs to the initial state set by CTR1, D0.

In DEMODULATION Mode, this bit is set to 1 when a falling edge is detected in the input signal. In order to reset it, a 1 should be written to this location.

Note: Modifying CTR1 (D1 or D0) while the counters are enabled causes unpredictable output from T8/16_OUT.

CTR2 Counter/Timer 16 Control Register—CTR2(D)02h

Table 13 lists and briefly describes the fields for this register.

Field	Bit Position		Value	Description
T16_Enable	7	R	0*	Counter Disabled
			1	Counter Enabled
		W	0	Stop Counter
			1	Enable Counter
Single/Modulo-N	-6	R/W		Transmit Mode
			0*	Modulo-N
			1	Single Pass
				Demodulation Mode
			0	T16 Recognizes Edge
			1	T16 Does Not Recognize
				Edge
Time_Out	5	R	0*	No Counter Timeout
			1	Counter Timeout
				Occurred
		W	0	No Effect
			1	Reset Flag to 0
T16 _Clock	43	R/W	00**	SCLK
			01	SCLK/2
			10	SCLK/4
			11	SCLK/8
Capture_INT_Mask	2	R/W	0**	Disable Data Capture Int.
			1	Enable Data Capture Int.
Counter_INT_Mask	1-	R/W	0	Disable Timeout Int.
			1	Enable Timeout Int.
P35_Out	0	R/W	0*	P35 as Port Output
			1	T16 Output on P35

Table 13.CTR2(D)02h: Counter/Timer16 Control Register

Note:

*Indicates the value upon Power-On Reset.

**Indicates the value upon Power-On Reset. Not reset with a Stop Mode recovery.

T16_Enable

This field enables T16 when set to 1.

Single/Modulo-N

In TRANSMIT Mode, when set to 0, the counter reloads the initial value when it reaches the terminal count. When set to 1, the counter stops when the terminal count is reached.

In Demodulation Mode, when set to 0, T16 captures and reloads on detection of all the edges. When set to 1, T16 captures and detects on the first edge but ignores the subsequent edges. For details, see the description of T16 Demodulation Mode on page 44.

Time_Out

This bit is set when T16 times out (terminal count reached). To reset the bit, write a 1 to this location.

T16_Clock

This bit defines the frequency of the input signal to Counter/Timer16.

Capture_INT_Mask

This bit is set to allow an interrupt when data is captured into LO16 and HI16.

Counter_INT_Mask

Set this bit to allow an interrupt when T16 times out.

P35_Out

This bit defines whether P35 is used as a normal output pin or T16 output.

CTR3 T8/T16 Control Register—CTR3(D)03h

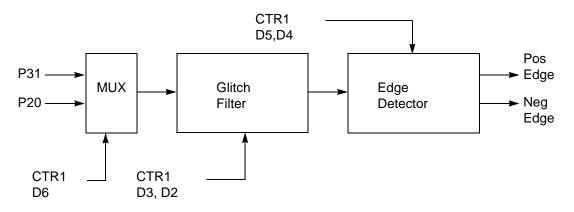
Table 14 lists and briefly describes the fields for this register. This register allows the T_8 and T_{16} counters to be synchronized.

Field	Bit Position		Value	Description
T ₁₆ Enable	7	R	0*	Counter Disabled
		R	1	Counter Enabled
		W	0	Stop Counter
		W	1	Enable Counter
T ₈ Enable	-6	R	0*	Counter Disabled
		R	1	Counter Enabled
		W	0	Stop Counter
		W	1	Enable Counter
Sync Mode	5	R/W	0**	Disable Sync Mode
-			1	Enable Sync Mode

Table 14. CTR3 (D)03h: T8/T16 Control Register

Table 14. CTR3 (D)03h: T8/T16 Control Register (Continued)

Field	Bit Position		Value	Description
Reserved	43210	R	1	Always reads 11111
		W	х	No Effect


Note: *Indicates the value upon Power-On Reset.

**Indicates the value upon Power-On Reset. Not reset with a Stop Mode recovery.

Counter/Timer Functional Blocks

Input Circuit

The edge detector monitors the input signal on P31 or P20. Based on CTR1 D5– D4, a pulse is generated at the Pos Edge or Neg Edge line when an edge is detected. Glitches in the input signal that have a width less than specified (CTR1 D3, D2) are filtered out (see Figure 18).

Figure 18. Glitch Filter Circuitry

T8 Transmit Mode

Before T8 is enabled, the output of T8 depends on CTR1, D1. If it is 0, T8_OUT is 1; if it is 1, T8_OUT is 0. See Figure 19.

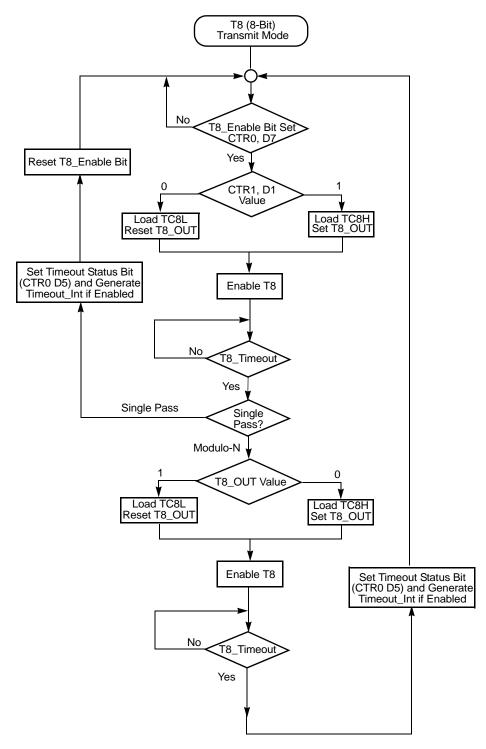


Figure 19. Transmit Mode Flowchart

When T8 is enabled, the output T8_OUT switches to the initial value (CTR1, D1). If the initial value (CTR1, D1) is 0, TC8L is loaded; otherwise, TC8H is loaded into the counter. In SINGLE-PASS Mode (CTR0, D6), T8 counts down to 0 and stops, T8_OUT toggles, the timeout status bit (CTR0, D5) is set, and a timeout interrupt can be generated if it is enabled (CTR0, D1). In Modulo-N Mode, upon reaching terminal count, T8_OUT is toggled, but no interrupt is generated. From that point, T8 loads a new count (if the T8_OUT level now is 0), TC8L is loaded; if it is 1, TC8H is loaded. T8 counts down to 0, toggles T8_OUT, and sets the timeout status bit (CTR0, D5), thereby generating an interrupt if enabled (CTR0, D1). One cycle is thus completed. T8 then loads from TC8H or TC8L according to the T8_OUT level and repeats the cycle. See Figure 20.

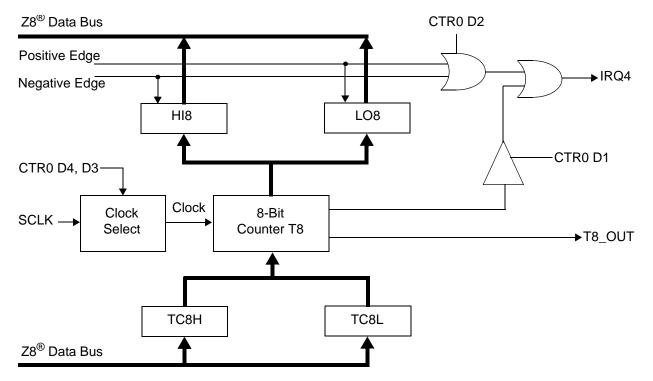
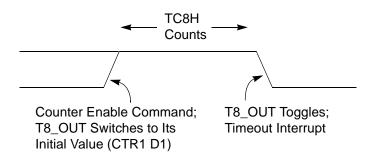
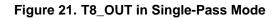


Figure 20. 8-Bit Counter/Timer Circuits

You can modify the values in TC8H or TC8L at any time. The new values take effect when they are loaded.

Caution: To ensure known operation do not write these registers at the time the values are to be loaded into the counter/timer. *An initial count of 1 is not allowed (a non-function occurs).* An initial count of 0 causes TC8 to count from 0 to FFh to FEh.


Note: The letter h denotes hexadecimal values.


Transition from 0 to FFh is not a timeout condition.

Caution: Using the same instructions for stopping the counter/timers and setting the status bits is not recommended.

Two successive commands are necessary. First, the counter/timers must be stopped. Second, the status bits must be reset. These commands are required because it takes one counter/timer clock interval for the initiated event to actually occur. See Figure 21 and Figure 22.

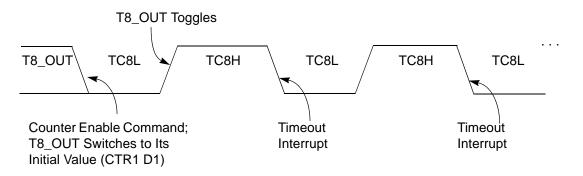


Figure 22. T8_OUT in Modulo-N Mode

T8 Demodulation Mode

The user must program TC8L and TC8H to FFh. After T8 is enabled, when the first edge (rising, falling, or both depending on CTR1, D5; D4) is detected, it starts to count down. When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is detected during counting, the current value of T8 is complemented and put into one of the capture registers. If it is a positive edge, data is put

into LO8; if it is a negative edge, data is put into HI8. From that point, one of the edge detect status bits (CTR1, D1; D0) is set, and an interrupt can be generated if enabled (CTR0, D2). Meanwhile, T8 is loaded with FFh and starts counting again. If T8 reaches 0, the timeout status bit (CTR0, D5) is set, and an interrupt can be generated if enabled (CTR0, D1). T8 then continues counting from FFh (see Figure 23 and Figure 24).

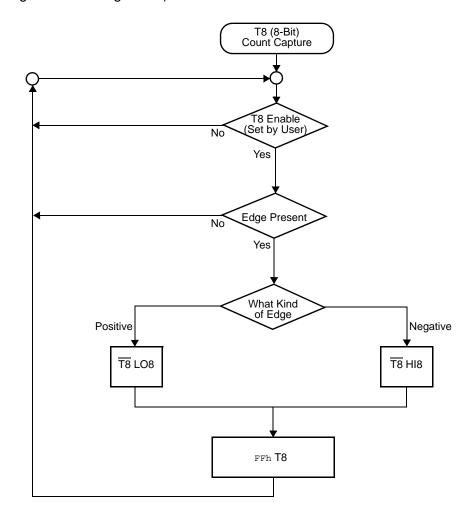


Figure 23. Demodulation Mode Count Capture Flowchart

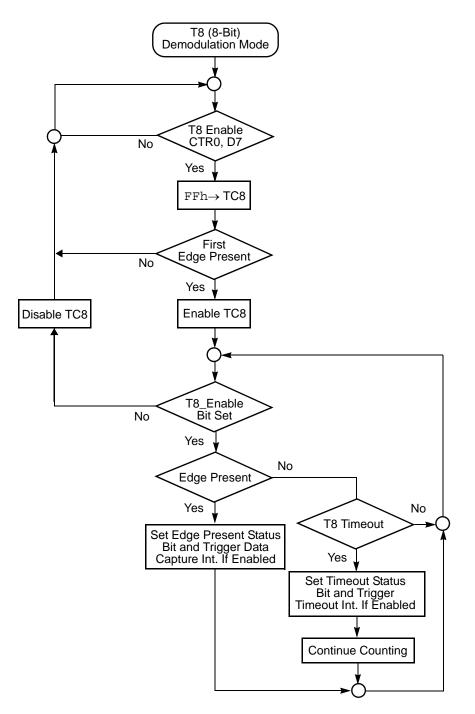


Figure 24. Demodulation Mode Flowchart

T16 Transmit Mode

In NORMAL or PING-PONG mode, the output of T16 when not enabled, is dependent on CTR1, D0. If it is a 0, T16_OUT is a 1; if it is a 1, T16_OUT is 0. You can force the output of T16 to either a 0 or 1 whether it is enabled or not by programming CTR1 D3; D2 to a 10 or 11.

When T16 is enabled, TC16H * 256 + TC16L is loaded, and T16_OUT is switched to its initial value (CTR1, D0). When T16 counts down to 0, T16_OUT is toggled (in NORMAL or PING-PONG mode), an interrupt (CTR2, D1) is generated (if enabled), and a status bit (CTR2, D5) is set. See Figure 25.

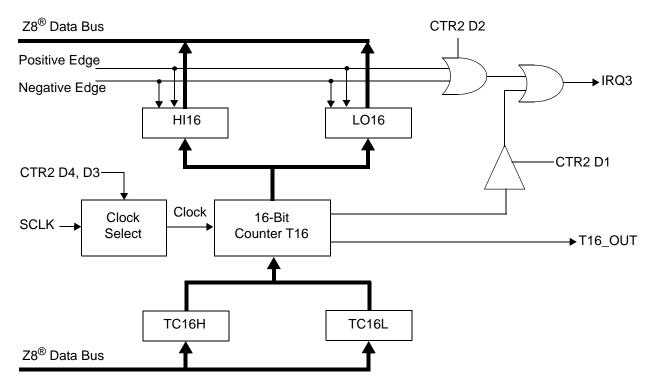


Figure 25. 16-Bit Counter/Timer Circuits

Note: Global interrupts override this function as described in "Interrupts" on page 47.

If T16 is in SINGLE-PASS mode, it is stopped at this point (see Figure 26). If it is in Modulo-N Mode, it is loaded with TC16H * 256 + TC16L, and the counting continues (see Figure 27).

You can modify the values in TC16H and TC16L at any time. The new values take effect when they are loaded.

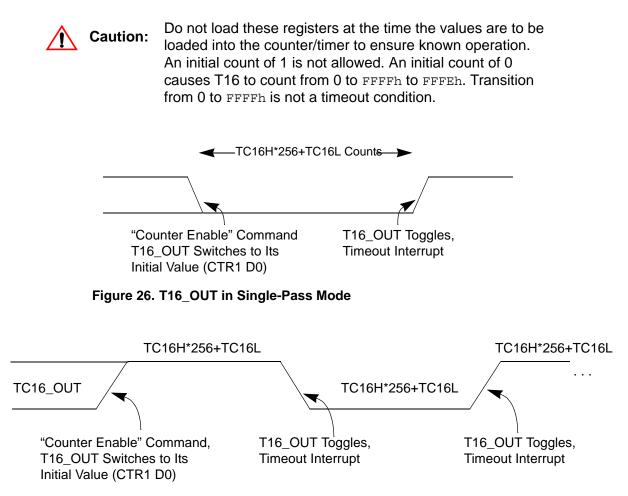


Figure 27. T16_OUT in Modulo-N Mode

T16 DEMODULATION Mode

The user must program TC16L and TC16H to FFh. After T16 is enabled, and the first edge (rising, falling, or both depending on CTR1 D5; D4) is detected, T16 captures HI16 and LO16, reloads, and begins counting.

If D6 of CTR2 Is 0

When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is detected during counting, the current count in T16 is complemented and put into HI16 and LO16. When data is captured, one of the edge detect status bits (CTR1, D1; D0) is set, and an interrupt is generated if enabled (CTR2, D2). T16 is loaded with FFFFh and starts again.

This T16 mode is generally used to measure space time, the length of time between bursts of carrier signal (marks).

If D6 of CTR2 Is 1

T16 ignores the subsequent edges in the input signal and continues counting down. A timeout of T8 causes T16 to capture its current value and generate an interrupt if enabled (CTR2, D2). In this case, T16 does not reload and continues counting. If the D6 bit of CTR2 is toggled (by writing a 0 then a 1 to it), T16 captures and reloads on the next edge (rising, falling, or both depending on CTR1, D5; D4), continuing to ignore subsequent edges.

This T16 mode generally measures mark time, the length of an active carrier signal burst.

If T16 reaches 0, T16 continues counting from FFFFh. Meanwhile, a status bit (CTR2 D5) is set, and an interrupt timeout can be generated if enabled (CTR2 D1).

Ping-Pong Mode

This operation mode is only valid in TRANSMIT Mode. T8 and T16 must be programmed in Single-Pass mode (CTR0, D6; CTR2, D6), and Ping-Pong mode must be programmed in CTR1, D3; D2. The user can begin the operation by enabling either T8 or T16 (CTR0, D7 or CTR2, D7). For example, if T8 is enabled, T8_OUT is set to this initial value (CTR1, D1). According to T8_OUT's level, TC8H or TC8L is loaded into T8. After the terminal count is reached, T8 is disabled, and T16 is enabled. T16_OUT then switches to its initial value (CTR1, D0), data from TC16H and TC16L is loaded, and T16 starts to count. After T16 reaches the terminal count, it stops, T8 is enabled again, repeating the entire cycle. Interrupts can be allowed when T8 or T16 reaches terminal control (CTR0, D1; CTR2, D1). To stop the ping-pong operation, write 00 to bits D3 and D2 of CTR1. See Figure 28.

Note: Enabling ping-pong operation while the counter/timers are running might cause intermittent counter/timer function. Disable the counter/timers and reset the status flags before instituting this operation.

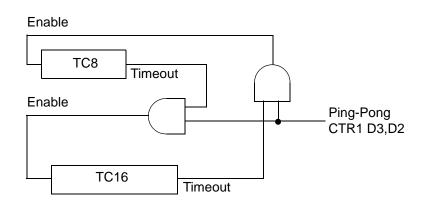
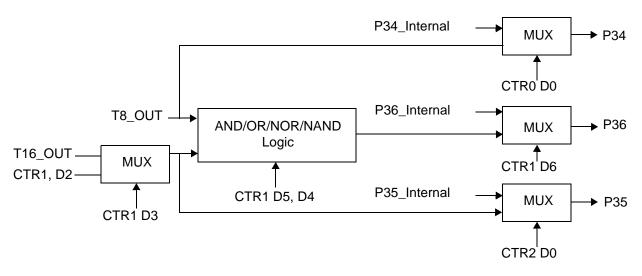



Figure 28. Ping-Pong Mode Diagram

Initiating PING-PONG Mode

First, make sure both counter/timers are not running. Set T8 into Single-Pass mode (CTR0, D6), set T16 into SINGLE-PASS mode (CTR2, D6), and set the Ping-Pong mode (CTR1, D2; D3). These instructions can be in random order. Finally, start PING-PONG mode by enabling either T8 (CTR0, D7) or T16 (CTR2, D7). See Figure 28.

The initial value of T8 or T16 must not be 1. If you stop the timer and restart the timer, reload the initial value to avoid an unknown previous value.

During PING-PONG Mode

The enable bits of T8 and T16 (CTR0, D7; CTR2, D7) are set and cleared alternately by hardware. The timeout bits (CTR0, D5; CTR2, D5) are set every time the counter/timers reach the terminal count.

Timer Output

The output logic for the timers is illustrated in Figure 29. P34 is used to output T8-OUT when D0 of CTR0 is set. P35 is used to output the value of TI6-OUT when D0 of CTR2 is set. When D6 of CTR1 is set, P36 outputs the logic combination of T8-OUT and T16-OUT determined by D5 and D4 of CTR1.

Interrupts

The CrimzonTM ZLP32300 features six different interrupts (Table 15). The interrupts are maskable and prioritized (Figure 30). The six sources are divided as follows: three sources are claimed by Port 3 lines P33–P31, two by the counter/ timers (Table 15) and one for low voltage detection. The Interrupt Mask Register (globally or individually) enables or disables the six interrupt requests.

The source for IRQ is determined by bit 1 of the Port 3 mode register (P3M). When in digital mode, Pin P33 is the source. When in analog mode the output of the Stop mode recovery source logic is used as the source for the interrupt. See Figure 35, Stop Mode Recovery Source, on page 56.

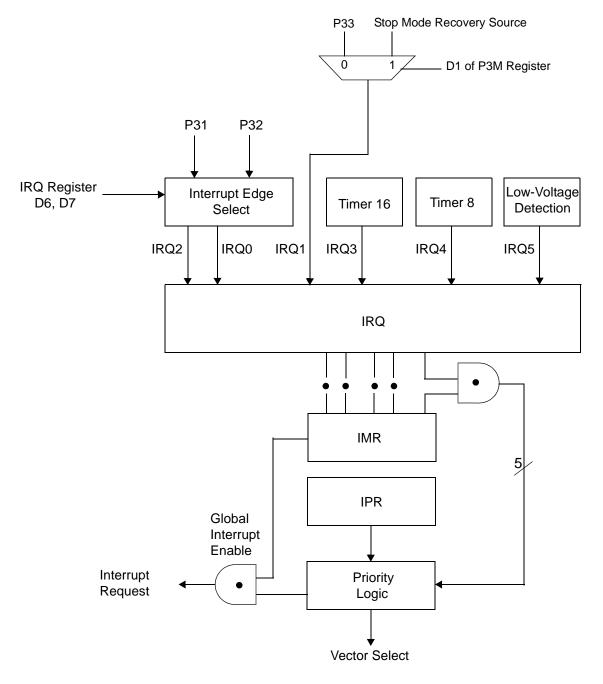


Figure 30. Interrupt Block Diagram

Name	Source	Vector Location	Comments
IRQ0	P32	0,1	External (P32), Rising, Falling Edge Triggered
IRQ1	P33	2,3	External (P33), Falling Edge Triggered
IRQ2	P31, T _{IN}	4,5	External (P31), Rising, Falling Edge Triggered
IRQ3	T16	6,7	Internal
IRQ4	Т8	8,9	Internal
IRQ5	LVD	10,11	Internal

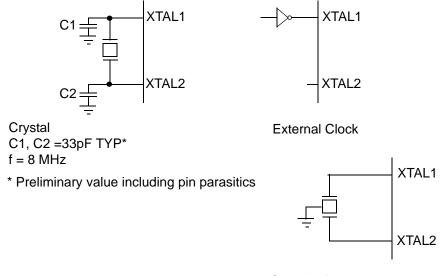
Table 15. Interrupt Types, Sources, and Vectors

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder controlled by the Interrupt Priority Register. An interrupt machine cycle activates when an interrupt request is granted. As a result, all subsequent interrupts are disabled, and the Program Counter and Status Flags are saved. The cycle then branches to the program memory vector location reserved for that interrupt. All CrimzonTM ZLP32300 interrupts are vectored through locations in the program memory. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request. To accommodate polled interrupt systems, interrupt inputs are masked, and the Interrupt Request register is polled to determine which of the interrupt requests require service.

An interrupt resulting from AN1 is mapped into IRQ2, and an interrupt from AN2 is mapped into IRQ0. Interrupts IRQ2 and IRQ0 can be rising, falling, or both edge triggered. These interrupts are programmable by the user. The software can poll to identify the state of the pin.

Programming bits for the Interrupt Edge Select are located in the IRQ Register (R250), bits D7 and D6. The configuration is indicated in Table 16.

IRQ		Interrupt Edge					
D7	D6	IRQ2 (P31)	IRQ0 (P32)				
0	0	F	F				
0	1	F	R				
1	0	R	F				
1	1 1 R/F R/F						
Note: F = Falling Edge; R = Rising Edge							


Table 16. IRQ Register

Clock

The device's on-chip oscillator has a high-gain, parallel-resonant amplifier, for connection to a crystal, ceramic resonator, or any suitable external clock source (XTAL1 = Input, XTAL2 = Output). The crystal must be AT cut, 1 MHz to 8 MHz maximum, with a series resistance (RS) less than or equal to 100 Ω . The on-chip oscillator can be driven with a suitable external clock source.

The crystal must be connected across XTAL1 and XTAL2 using the recommended capacitors (capacitance greater than or equal to 22 pF) from each pin to ground.

Ceramic Resonator f = 8 MHz

Figure 31. Oscillator Configuration

Power-On Reset

A timer circuit clocked by a dedicated on-board RC-oscillator is used for the Power-On Reset (POR) timer function. The POR time allows V_{DD} and the oscillator circuit to stabilize before instruction execution begins.

The POR timer circuit is a one-shot timer triggered by one of three conditions:

- Power Fail to Power OK status, including Waking up from V_{BO} Standby
- Stop-Mode Recovery (if D5 of SMR = 1)
- WDT Timeout

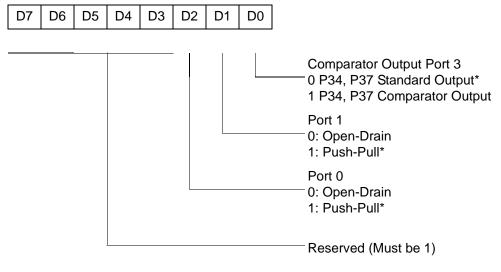
The POR timer is 2.5 ms minimum. Bit 5 of the Stop-Mode Register determines whether the POR timer is bypassed after Stop-Mode Recovery (typical for external clock).

HALT Mode

This instruction turns off the internal CPU clock, but not the XTAL oscillation. The counter/timers and external interrupts IRQ0, IRQ1, IRQ2, IRQ3, IRQ4, and IRQ5 remain active. The devices are recovered by interrupts, either externally or internally generated. An interrupt request must be executed (enabled) to exit HALT Mode. After the interrupt service routine, the program continues from the instruction after HALT Mode.

STOP Mode

This instruction turns off the internal clock and external crystal oscillation, reducing the standby current to 10 μ A or less. STOP Mode is terminated only by a reset, such as WDT timeout, POR or SMR. This condition causes the processor to restart the application program at address 000Ch. To enter STOP (or HALT) mode, first flush the instruction pipeline to avoid suspending execution in mid-instruction. Execute a NOP (Opcode = FFh) immediately before the appropriate sleep instruction, as follows:



FF	NOP	; clear the pipeline
6F	STOP	; enter Stop Mode
or		
FF	NOP	; clear the pipeline
7F	HALT	; enter HALT Mode
71	111 111 1	, cheer milli noue

Port Configuration Register

The Port Configuration (PCON) register (Figure 32) configures the comparator output on Port 3. It is located in the expanded register 2 at Bank F, location 00.

PCON(FH)00h

* Default setting after reset

Figure 32. Port Configuration Register (PCON) (Write Only)

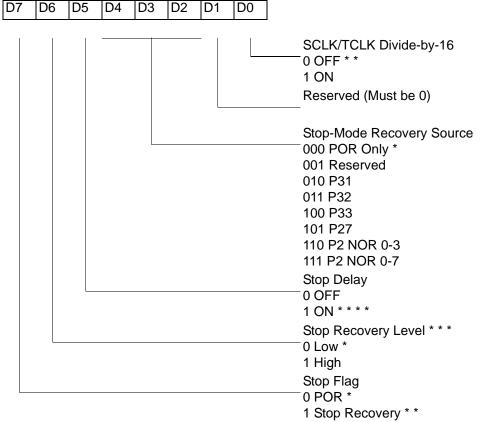
Comparator Output Port 3 (D0)

Bit 0 controls the comparator used in Port 3. A 1 in this location brings the comparator outputs to P34 and P37, and a 0 releases the Port to its standard I/O configuration.

Port 1 Output Mode (D1)

Bit 1 controls the output mode of port 1. A 1 in this location sets the output to push-pull, and a 0 sets the output to open-drain.

Port 0 Output Mode (D2)


Bit 2 controls the output mode of port 0. A 1 in this location sets the output to push-pull, and a 0 sets the output to open-drain.

Stop-Mode Recovery Register (SMR)

This register selects the clock divide value and determines the mode of Stop Mode Recovery (Figure 33). All bits are write only except bit 7, which is read only. Bit 7 is a flag bit that is hardware set on the condition of Stop recovery and reset by a power-on cycle. Bit 6 controls whether a low level or a high level at the XORgate input (Figure 35 on page 56) is required from the recovery source. Bit 5 controls the reset delay after recovery. Bits D2, D3, and D4 of the SMR register specify the source of the Stop-Mode Recovery signal. Bits D0 determines if SCLK/ TCLK are divided by 16 or not. The SMR is located in Bank F of the Expanded Register Group at address <code>0Bh</code>.

SMR(0F)0Bh

* Default after Power On Reset or Watch-Dog Reset

* * Default setting after Reset and Stop Mode recovery.

* * * At the XOR gate input

* * * * Default setting after reset. Must be 1 if using a crystal or resonator clock source.

Figure 33. STOP Mode Recovery Register

SCLK/TCLK Divide-by-16 Select (D0)

D0 of the SMR controls a divide-by-16 prescaler of SCLK/TCLK (Figure 34). This control selectively reduces device power consumption during normal processor execution (SCLK control) and/or Halt Mode (where TCLK sources interrupt logic). After Stop Mode Recovery, this bit is set to a 0.

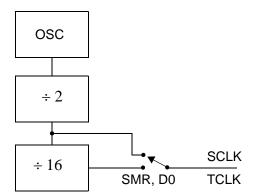


Figure 34. SCLK Circuit

Stop-Mode Recovery Source (D2, D3, and D4)

These three bits of the SMR specify the wake-up source of the Stop recovery (Figure 35 and Table 18).

Stop-Mode Recovery Register 2—SMR2(F)0Dh

Table 17 lists and briefly describes the fields for this register.

Field	Bit Position		Value	Description
Reserved	7		0	Reserved (Must be 0)
Recovery Level	-6	W	0 [†]	Low
-			1	High
Reserved	5		0	Reserved (Must be 0)
Source	432	W	000 [†]	A. POR Only
			001	B. NAND of P23–P20
			010	C. NAND of P27–P20
			011	D. NOR of P33–P31
			100	E. NAND of P33–P31
			101	F. NOR of P33–P31, P00, P07
			110	G. NAND of P33–P31, P00, P07
			111	H. NAND of P33–P31, P22–P20
Reserved	10		00	Reserved (Must be 0)

Notes:

* Port pins configured as outputs are ignored as an SMR recovery source. † Indicates the value upon Power-On Reset

Crimzon[™]ZLP32300 Product Specification

56

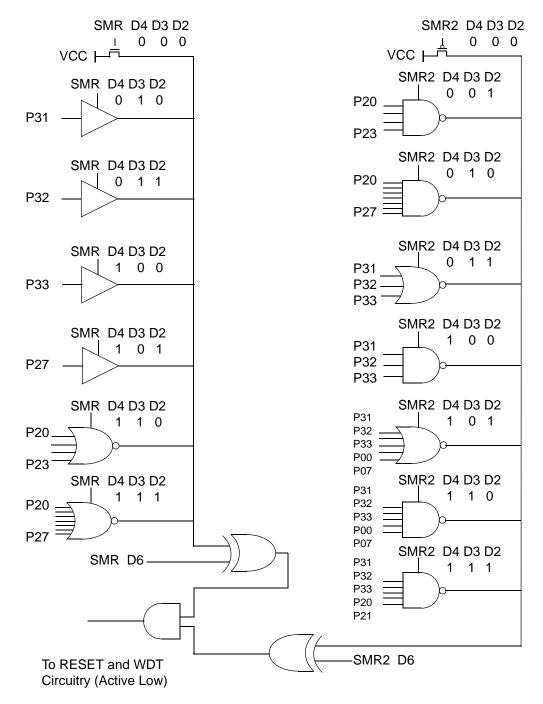


Figure 35. Stop Mode Recovery Source

Crimzon[™]ZLP32300 Product Specification

Table 18. Stop Mode Recovery Source

:432		Operation		
D3	D2	Description of Action		
0	0	POR and/or external reset recovery		
0	1	Reserved		
1	0	P31 transition		
1	1	P32 transition		
0	0	P33 transition		
0	1	P27 transition		
1	0	Logical NOR of P20 through P23		
1	1	Logical NOR of P20 through P27		
	D3 0 1 1 0 0 0 1	D3 D2 0 0 1 0 1 1 0 0 1 1 0 0 1 0 1 0 0 0 0 1		

>

Note: Any Port 2 bit defined as an output drives the corresponding input to the default state. For example, if the NOR of P23-P20 is selected as the recovery source and P20 is configured as an output, the remaining SMR pins (P23-P21) form the NOR equation. This condition allows the remaining inputs to control the AND/OR function. Refer to SMR2 register on page 58 for other recover sources.

Stop Mode Recovery Delay Select (D5)

This bit, if low, disables the T_{POR} delay after Stop Mode Recovery. The default configuration of this bit is 1. If the "fast" wake up is selected, the Stop-Mode Recovery source must be kept active for at least 10 TpC.

Note: This bit must be set to 1 if using a crystal or resonator clock source. The T_{POR} delay allows the clock source to stabilize before executing instructions.

Stop Mode Recovery Edge Select (D6)

A 1 in this bit position indicates that a High level on any one of the recovery sources wakes the CrimzonTM ZLP32300 from Stop Mode. A 0 indicates Low level recovery. The default is 0 on POR.

Cold or Warm Start (D7)

This bit is read only. It is set to 1 when the device is recovered from Stop Mode. The bit is set to 0 when the device reset is other than Stop Mode Recovery (SMR).

CrimzonTMZLP32300 Product Specification

Stop Mode Recovery Register 2 (SMR2)

This register determines the mode of Stop Mode Recovery for SMR2 (Figure 36).

SMR2(0F)Dh

D7	D6	D5	D4	D3	D2	D1	D0]
								 Reserved (Must be 0) Reserved (Must be 0) Stop-Mode Recovery Source 2 000 POR Only * 001 NAND P20, P21, P22, P23 010 NAND P20, P21, P22, P23, P24, P25, P26, P27 011 NOR P31, P32, P33 100 NAND P31, P32, P33 101 NOR P31, P32, P33, P00, P07 110 NAND P31, P32, P33, P00, P07
								 111 NAND P31, P32, P33, P20, P21, P22 Reserved (Must be 0) Recovery Level * * 0 Low * 1 High Reserved (Must be 0)

Note: If used in conjunction with SMR, either of the two specified events causes a Stop-Mode Recovery.

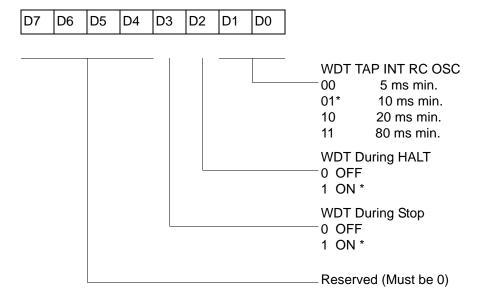
* Default setting after reset

* * At the XOR gate input

Figure 36. Stop Mode Recovery Register 2 ((0F)DH:D2–D4, D6 Write Only)

If SMR2 is used in conjunction with SMR, either of the specified events causes a Stop Mode Recovery.

Note: Port pins configured as outputs are ignored as an SMR or SMR2 recovery source. For example, if the NAND or P23–P20 is selected as the recovery source and P20 is configured as an output, the remaining SMR pins (P23–P21) form the NAND equation.



Watch-Dog Timer Mode Register (WDTMR)

The Watch-Dog Timer (WDT) is a retriggerable one-shot timer that resets the $Z8^{(i)}$ if it reaches its terminal count. The WDT must initially be enabled by executing the WDT instruction. On subsequent executions of the WDT instruction, the WDT is refreshed. The WDT circuit is driven by an on-board RC-oscillator. The WDT instruction affects the Zero (Z), Sign (S), and Overflow (V) flags.

The POR clock source the internal RC-oscillator. Bits 0 and 1 of the WDT register control a tap circuit that determines the minimum timeout period. Bit 2 determines whether the WDT is active during HALT, and Bit 3 determines WDT activity during Stop. Bits 4 through 7 are reserved (Figure 37). This register is accessible only during the first 60 processor cycles (120 XTAL clocks) from the execution of the first instruction after Power-On-Reset, Watch-Dog Reset, or a Stop-Mode Recovery (Figure 36). After this point, the register cannot be modified by any means (intentional or otherwise). The WDTMR cannot be read. The register is located in Bank F of the Expanded Register Group at address location 0Fh. It is organized as shown in Figure 37.

WDTMR(0F)0Fh

* Default setting after reset

Figure 37. WATCH-DOG TIMER Mode Register (Write Only)

WDT Time Select (D0, D1)

This bit selects the WDT time period. It is configured as indicated in Table 19.

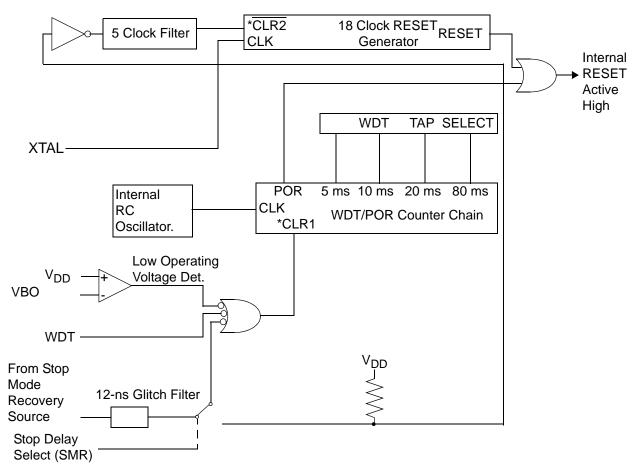


Table 19. Watch-Dog Timer Time Select

D1	D0	Timeout of Internal RC-Oscillator
0	0	5ms min.
0	1	10ms min.
1	0	20ms min.
1	1	80ms min.

WDTMR During Halt (D2)

This bit determines whether or not the WDT is active during HALT Mode. A 1 indicates active during HALT. The default is 1. See Figure 38.

* CLR1 and CLR2 enable the WDT/POR and 18 Clock Reset timers respectively upon a Low-to-High input translation.

Figure 38. Resets and WDT

WDTMR During STOP (D3)

This bit determines whether or not the WDT is active during STOP Mode. A 1 indicates active during Stop. The default is 1.

EPROM Selectable Options

There are seven EPROM Selectable Options to choose from based on ROM code requirements. These are listed in Table 20.

Table 20. EPROM Selectable Options

Port 00–03 Pull-Ups	On/Off
Port 04–07 Pull-Ups	On/Off
Port 10–13 Pull-Ups	On/Off
Port 14–17 Pull-Ups	On/Off
Port 20–27 Pull-Ups	On/Off
EPROM Protection	On/Off
Watch-Dog Timer at Power-On Reset	On/Off

Voltage Brown-Out/Standby

An on-chip Voltage Comparator checks that the V_{DD} is at the required level for correct operation of the device. Reset is globally driven when V_{DD} falls below V_{BO}. A small drop in V_{DD} causes the XTAL1 and XTAL2 circuitry to stop the crystal or resonator clock. If the V_{DD} is allowed to stay above V_{RAM}, the RAM content is preserved. When the power level is returned to above V_{BO}, the device performs a POR and functions normally.

Crimzon[™]ZLP32300 Product Specification

Low-Voltage Detection Register—LVD(D)0Ch

Note: Voltage detection does not work at Stop mode. It must be disabled during Stop mode in order to reduce current.

Field	Bit Position			Description
LVD	76543			Reserved No Effect
	2	R	1 0*	HVD flag set HVD flag reset
	1-	R	1 0*	LVD flag set LVD flag reset
	0	R/W	1 0*	Enable VD Disable VD
*Default	after POR			

Note: Do not modify register P01M while checking a low-voltage condition. Switching noise of both ports 0 and 1 together might trigger the LVD flag.

Voltage Detection and Flags

The Voltage Detection register (LVD, register <code>OCh</code> at the expanded register bank <code>ODh</code>) offers an option of monitoring the V_{CC} voltage. The Voltage Detection is enabled when bit 0 of LVD register is set. Once Voltage Detection is enabled, the the V_{CC} level is monitored in real time. The HVD flag (bit 2 of the LVD register) is set only if V_{CC} is higher than V_{HVD}. The LVD flag (bit 1 of the LVD register) is set only if V_{CC} is lower than the V_{LVD}. When Voltage Detection is enabled, the LVD flag also triggers IRQ5. The IRQ bit 5 latches the low voltage condition until it is cleared by instructions or reset. The IRQ5 interrupt is served if it is enabled in the IMR register. Otherwise, bit 5 of IRQ register is latched as a flag only.

Note: If it is necessary to receive an LVD interrupt upon power-up at an operating voltage lower than the low battery detect threshold, enable interrupts using the Enable Interrupt instruction (EI) prior to enabling the voltage detection.

Expanded Register File Control Registers (0D)

The expanded register file control registers (0D) are depicted in Figure 39 through Figure 43.

* Default setting after reset.

** Default setting after reset. Not reset with a Stop Mode recovery.

Figure 39. TC8 Control Register ((0D)O0H: Read/Write Except Where Noted)

)7	D6	D5	D4	D3	D2	D1	D0	
		_		_				Transmit Mode* R/W 0 T16_OUT is 0 initially* 1 T16_OUT is 1 initially Demodulation Mode R 0 No Falling Edge Detection R 1 Falling Edge Detection W 0 No Effect W 1 Reset Flag to 0
								Transmit Mode* R/W 0 T8_OUT is 0 initially* 1 T8_OUT is 1 initially Demodulation Mode R 0 No Rising Edge Detection
								R 1 Rising Edge Detection W 0 No Effect W 1 Reset Flag to 0
								Transmit Mode* 0 0 Normal Operation* 0 1 Ping-Pong Mode 1 0 T16_OUT = 0 1 1 T16_OUT = 1
								Demodulation Mode 0 0 No Filter 0 1 4 SCLK Cycle Filter 1 0 8 SCLK Cycle Filter 1 1 Reserved
								Transmit Mode/T8/T16 Logic 0 0 AND** 0 1 OR 1 0 NOR 1 1 NAND
								Demodulation Mode 0 0 Falling Edge Detection 0 1 Rising Edge Detection 1 0 Both Edge Detection 1 1 Reserved
								Transmit Mode 0 P36 as Port Output * 1 P36 as T8/T16_OUT Demodulation Mode
								Demodulation Mode 0 P31 as Demodulator Inpu 1 P20 as Demodulator Inpu Transmit/Demodulation Mode
	fault se fault se							0 Transmit Mode *

Figure 40. T8 and T16 Common Control Functions ((0D)01H: Read/Write)

Notes: Take care in differentiating the Transmit Mode from Demodulation Mode. Depending on which of these two modes is operating, the CTR1 bit has different functions.

Changing from one mode to another cannot be performed without disabling the counter/timers.

>

CTR2(0D)02H

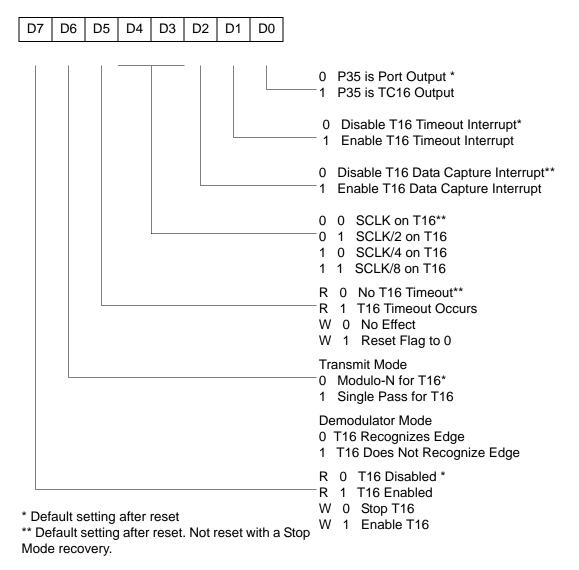


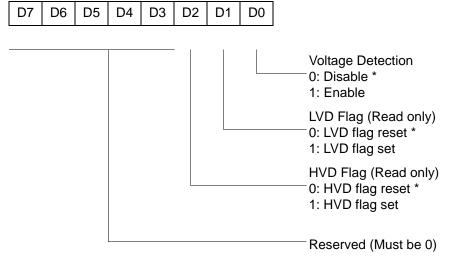
Figure 41. T16 Control Register ((0D) 2H: Read/Write Except Where Noted)

67

CTR3(0D)03H

D7	D6	D5	D4	D3	D2	D1	D0	
								Reserved No effect when written Always reads 11111
								Sync Mode 0* Disable Sync Mode** 1 Enable Sync Mode
								T ₈ Enable R 0* T ₈ Disabled R 1 T ₈ Enabled W0 Stop T ₈ W1 Enable T ₈
								T ₁₆ Enable R 0* T ₁₆ Disabled R 1 T ₁₆ Enabled W 0 Stop T ₁₆ W 1 Enable T ₁₆

* Default setting after reset. ** Default setting after reset. Not reset with a Stop Mode recovery.


Figure 42. T8/T16 Control Register (0D)03H: Read/Write (Except Where Noted)

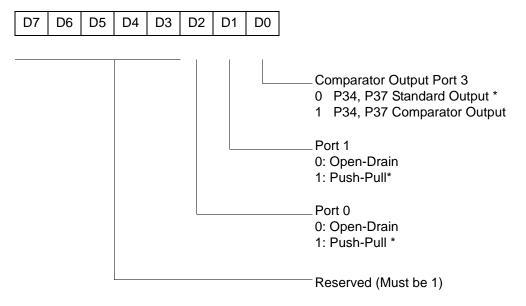
Note: If Sync Mode is enabled, the first pulse of T8 carrier is always synchronized with T16 (demodulated signal). It can always provide a full carrier pulse.

>

LVD(0D)0CH

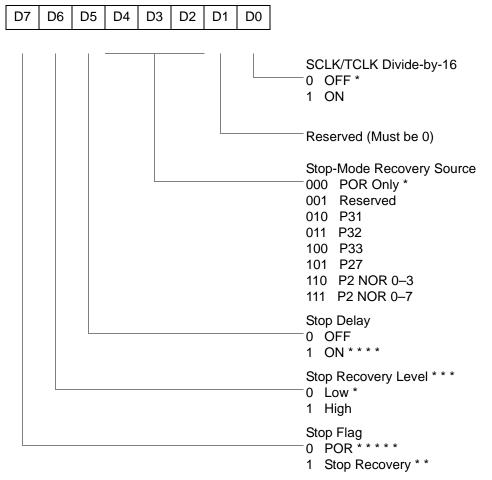
* Default setting after reset.

Figure 43. Voltage Detection Register

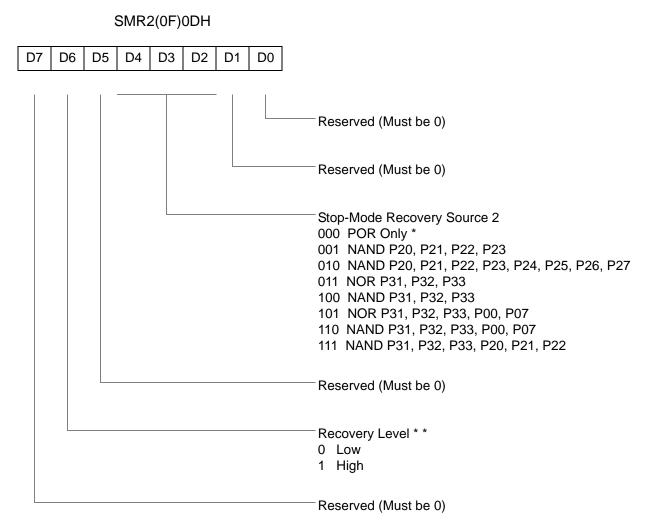

Note: Do not modify register P01M while checking a low-voltage condition. Switching noise of both ports 0 and 1 together might trigger the LVD flag.

Expanded Register File Control Registers (0F)

The expanded register file control registers (0F) are depicted in Figures 44 through Figure 57.


PCON(0F)00H

* Default setting after reset

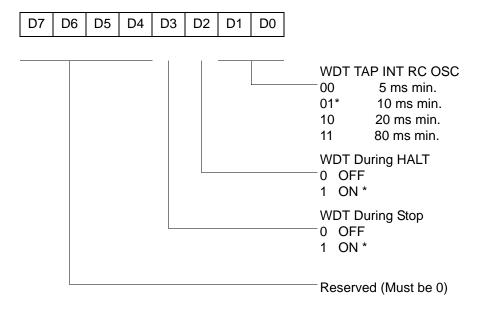

Figure 44. Port Configuration Register (PCON)(0F)00H: Write Only)

SMR(0F)0BH

- * Default setting after Reset
- * * Set after STOP Mode Recovery
- * * * At the XOR gate input
- **** Default setting after Reset. Must be 1 if using a crystal or resonator clock source.
- * * * * * Default setting after Power On Reset. Not Reset with a Stop Mode recovery.

Figure 45. Stop Mode Recovery Register ((0F)0BH: D6–D0=Write Only, D7=Read Only)

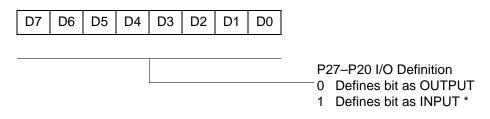
Note: If used in conjunction with SMR, either of the two specified events causes a Stop-Mode Recovery.


* Default setting after reset. Not Reset with a Stop Mode recovery.

* * At the XOR gate input

Figure 46. Stop Mode Recovery Register 2 ((0F)0DH:D2–D4, D6 Write Only)

WDTMR(0F)0FH

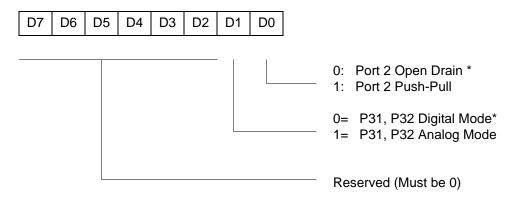


* Default setting after reset. Not Reset with a Stop Mode recovery.

Figure 47. Watch-Dog Timer Register ((0F) 0FH: Write Only)

Standard Control Registers

R246 P2M(F6H)



* Default setting after reset. Not Reset with a Stop Mode recovery.

Figure 48. Port 2 Mode Register (F6H: Write Only)

R247 P3M(F7H)

* Default setting after reset. Not Reset with a Stop Mode recovery.

Figure 49. Port 3 Mode Register (F7H: Write Only)

R248 P01M(F8H)

 * Default setting after reset; only P00, P01 and P07 are available on Crimzon TM ZLP32300 20-pin configurations.

Figure 50. Port 0 and 1 Mode Register (F8H: Write Only)

R249 IPR(F9H)

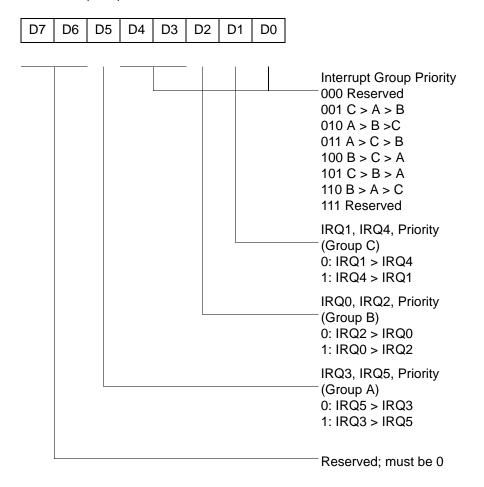
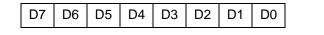
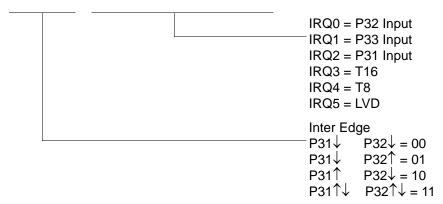




Figure 51. Interrupt Priority Register (F9H: Write Only)

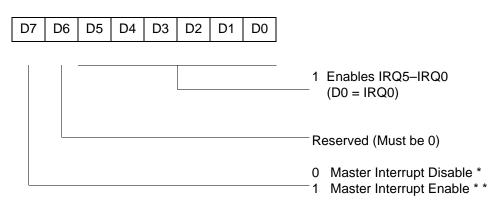
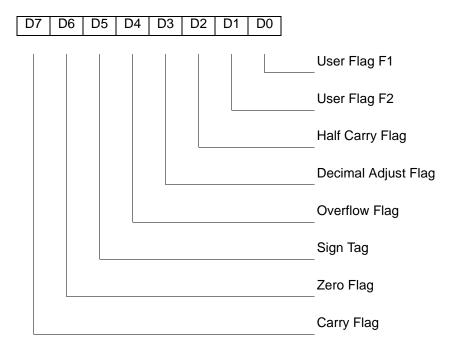

R250 IRQ(FAH)

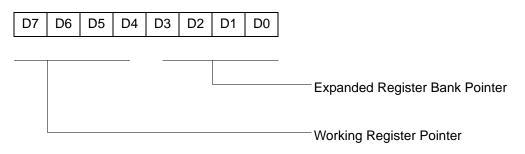
Figure 52. Interrupt Request Register (FAH: Read/Write)

R251 IMR(FBH)


* Default setting after reset

* * Only by using EI, DI instruction; DI is required before changing the IMR register

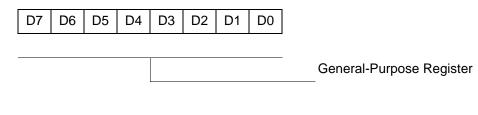
Figure 53. Interrupt Mask Register (FBH: Read/Write)



R252 Flags(FCH)

Figure 54. Flag Register (FCH: Read/Write)

R253 RP(FDH)



Default setting after reset = 0000 0000

Figure 55. Register Pointer (FDH: Read/Write)

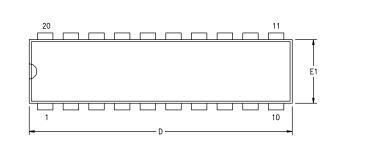


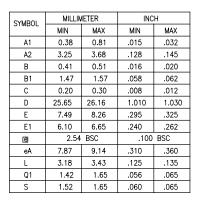
R254 SPH(FEH)

Figure 56. Stack Pointer High (FEH: Read/Write)

R255 SPL(FFH)

Stack Pointer Low Byte (SP7–SP0)


Figure 57. Stack Pointer Low (FFH: Read/Write)


Package Information

Package information for all versions of CrimzonTM ZLP32300 is depicted in Figures 58 through Figure 65.

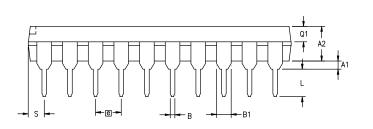
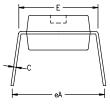
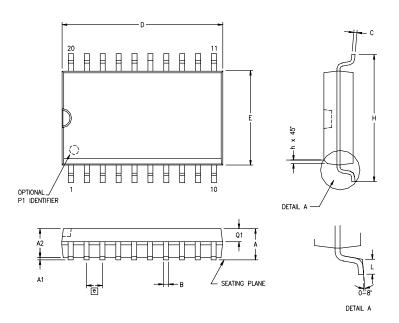
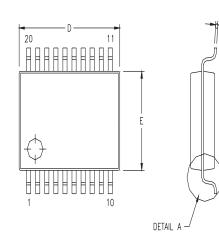



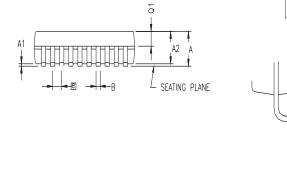
Figure 58. 20-Pin PDIP Package Diagram

CONTROLLING DIMENSIONS : INCH




Figure 59. 20-Pin SOIC Package Diagram

0.440.01	MILLI	METER	INCH		
SYMBOL	MIN	MAX	MIN	MAX	
A	2.40	2.65	.094	.104	
A1	0.10	0.30	.004	.012	
A2	2.24	2.44	.088	.096	
в	0.36	0.46	.014	.018	
С	0.23	0.30	.009	.012	
D	12.60	12.95	.496	.510	
E	7.40	7.60	.291	.299	
e	1.27	BSC	.050	BSC	
Н	10.00	10.65	.394	.419	
h	0.30	0.40	.012	.016	
L	0.60	1.00	.024	.039	
Q1	0.97	1.07	.038	.042	


CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

04400		MILLIMETER		INCH			
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX	
A	1.73	1.85	1.98	0.068	0.073	0.078	
A1	0.05	0.13	0.21	0.002	0.005	0.008	
A2	1.68	1.73	1.83	0.066	0.068	0.072	
В	0.25	0.30	0.38	0.010	0.012	0.015	
С	0.13	0.15	0.22	0.005	0.006	0.009	
D	7.07	7.20	7.33	0.278	0.283	0.289	
E	5.20	5.30	5.38	0.205	0.209	0.212	
e		0.65 BSC		0.0256 BSC			
Н	7.65	7.80	7.90	0.301	0.307	0.311	
L	0.56	0.75	0.94	0.022	0.030	0.037	
Q1	0.74	0.78	0.82	0.029	0.031	0.032	

CON L LEAD

0-8

DETAIL A

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

Figure 60. 20-Pin SSOP Package Diagram

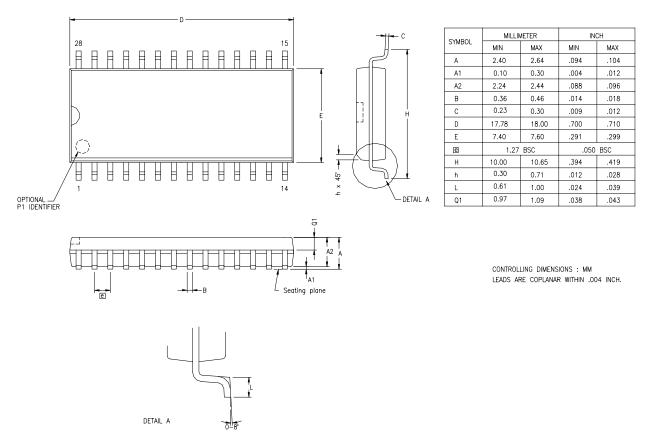
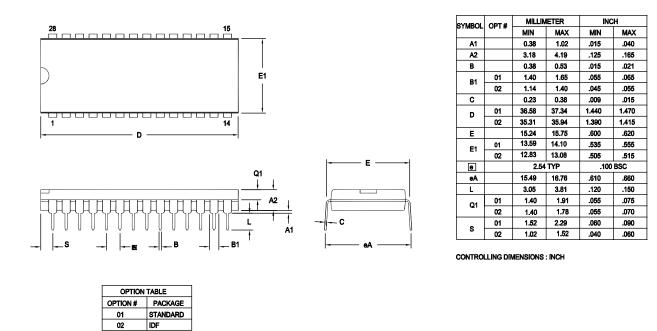
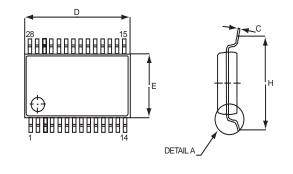
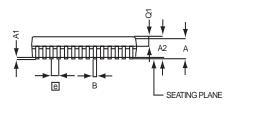



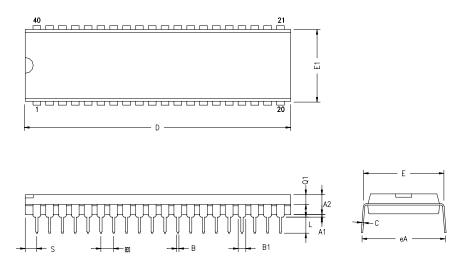
Figure 61. 28-Pin SOIC Package Diagram





Note: ZILOG supplies both options for production. Component layout PCB design should cover bigger option 01.

Figure 62. 28-Pin PDIP Package Diagram


		MILLIMETER	2	INCH			
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX	
А	1.73	1.86	1.99	0.068	0.073	0.078	
A1	0.05	0.13	0.21	0.002	0.005	0.008	
A2	1.68	1.73	1.78	0.066	0.068	0.070	
В	0.25		0.38	0.010		0.015	
С	0.09	-	0.20	0.004	0.006	0.008	
D	10.07	10.20	10.33	0.397	0.402	0.407	
E	5.20	5.30	5.38	0.205	0.209	0.212	
е		0.65 TYP		0.0256 TYP			
Н	7.65	7.80	7.90	0.301	0.307	0.311	
L	0.63	0.75	0.95	0.025	0.030	0.037	

CONTROLLING DIMENSIONS: MM LEADS ARE COPLANAR WITHIN .004 INCHES.

<u>DETAIL 'A'</u>

0-8

Figure 63. 28-Pin SSOP Package Diagram

MILLIMETER INCH SYMBOL MIN MAX MIN MAX A1 0.51 1.02 .020 .040 A2 3.18 3.94 .125 .155 В 0.38 0.53 .015 .021 B1 1.02 1.52 .040 .060 С 0.23 0.38 .009 .015 D 52.07 2.050 2.070 52.58 E 15.24 .620 15.75 .600 14.22 E1 .560 13.59 .535 2.54 TYP TYP e .100 15.49 16.76 .660 еA .610 3.81 .120 .150 3.05 L Q1 1.40 1.91 .055 .075 1.52 .060 .090 S 2.29

CONTROLLING DIMENSIONS : INCH

Figure 64. 40-Pin PDIP Package Diagram

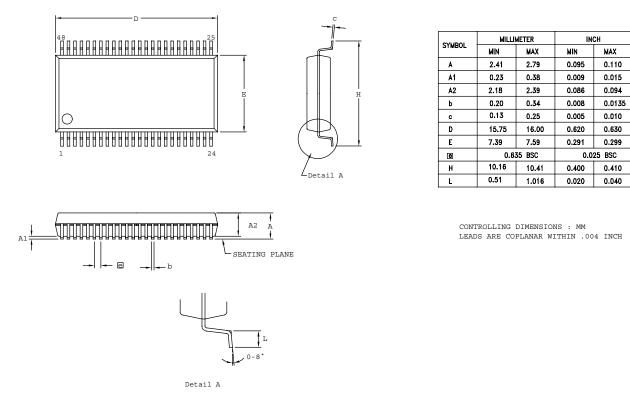


Figure 65. 48-Pin SSOP Package Design

Note: Please check with ZiLOG on the actual bonding diagram and coordinate for chip-on-board assembly.

>

85

ZILOG

Ordering Information

Device	Part Number	Description	Part Number	Description
	ZLP32300H4832C	48-pin SSOP 32K OTP	ZLP32300H4808C	48-pin SSOP 8K OTP
ZLP32300	ZLP32300P4032C	40-pin PDIP 32K OTP	ZLP32300P4008C	40-pin PDIP 8K OTP
	ZLP32300H2832C	28-pin SSOP 32K OTP	ZLP32300H2808C	28-pin SSOP 8K OTP
	ZLP32300P2832C	28-pin PDIP 32K OTP	ZLP32300P2808C	28-pin PDIP 8K OTP
	ZLP32300S2832C	28-pin SOIC 32K OTP 20-pin SSOP 32K OTP 20-pin PDIP 32K OTP	ZLP32300S2808C	28-pin SOIC 8K OTP
	ZLP32300H2032C		ZLP32300H2008C	20-pin SSOP 8K OTP
	ZLP32300P2032C		ZLP32300P2008C	20-pin PDIP 8K OTP
	ZLP32300S2032C	20-pin SOIC 32K OTP	ZLP32300S2008C	20-pin SOIC 8K OTP
			-	
	ZLP32300H4816C	48-pin SSOP 16K OTP	ZLP32300H4804C	48-pin SSOP 4K OTP
	ZLP32300P4016C	40-pin PDIP 16K OTP	ZLP32300P4004C	40-pin PDIP 4K OTP
	ZLP32300H2816C	28-pin SSOP 16K OTP	ZLP32300H2804C	28-pin SSOP 4K OTP
	ZLP32300P2816C	28-pin PDIP 16K OTP	ZLP32300P2804C	28-pin PDIP 4K OTP
	ZLP32300S2816C	28-pin SOIC 16K OTP	ZLP32300S2804C	28-pin SOIC 4K OTP
	ZLP32300H2016C	20-pin SSOP 16K OTP	ZLP32300H2004C	20-pin SSOP 4K OTP
	ZLP32300P2016C	20-pin PDIP 16K OTP	ZLP32300P2004C	20-pin PDIP 4K OTP
	ZLP32300S2016C	20-pin SOIC 16K OTP	ZLP32300S2004C	20-pin SOIC 4K OTP
	ZLP32300100KIT	Development Kit	Emulator	ZLP323ICE01ZEM

Notes:

1. Replace C with G for Lead-Free Packaging

2. Contact <u>www.zilog.com</u> for the die form.

For fast results, contact your local ZiLOG sales office for assistance in ordering the part desired.

Codes

ZL = ZiLOG Low Voltage Family

P = OTP

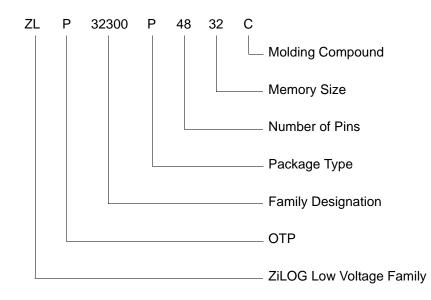
32300 = Family Designation

P = Package Type:

P = Plastic DIP H = SSOP

S = SOIC

= Number of Pins


CC = Memory Size

M = Molding Compound

C = Standard Plastic Molding Compound

G = "Green" Plastic Molding Compound

Example

Index

Numerics

16-bit counter/timer circuits 43 20-pin DIP package diagram 79 20-pin SSOP package diagram 80 28-pin DIP package diagram 82 28-pin SOICpackage diagram 81 28-pin SSOP package diagram 83 40-pin DIP package diagram 83 48-pin SSOP package diagram 84 8-bit counter/timer circuits 39

Α

absolute maximum ratings 10 AC characteristics 13 timing diagram 13 address spaces, basic 2 architecture 2 expanded register file 25

В

basic address spaces 2 block diagram, ZLP32300 functional 3

С

capacitance 11 characteristics AC 13 DC 11 clock 50 comparator inputs/outputs 22 configuration port 0 16 port 1 17 port 2 18 port 3 19 port 3 counter/timer 21 counter/timer 16-bit circuits 43 8-bit circuits 39 brown-out voltage/standby 61 clock 50 demodulation mode count capture flowchart 41 demodulation mode flowchart 42 **EPROM** selectable options 61 glitch filter circuitry 37 halt instruction 51 input circuit 37 interrupt block diagram 48 interrupt types, sources and vectors 49 oscillator configuration 50 output circuit 46 ping-pong mode 45 port configuration register 52 resets and WDT 60 SCLK circuit 55 stop instruction 51 stop mode recovery register 54 stop mode recovery register 2 58 stop mode recovery source 56 T16 demodulation mode 44 T16 transmit mode 43 T16_OUT in modulo-N mode 44 T16 OUT in single-pass mode 44 T8 demodulation mode 40 T8 transmit mode 37 T8 OUT in modulo-N mode 40 T8 OUT in single-pass mode 40 transmit mode flowchart 38 voltage detection and flags 62 watch-dog timer mode register 59 watch-dog timer time select 60 CTR(D)01h T8 and T16 Common Functions 32

D

DC characteristics 11 demodulation mode count capture flowchart 41 flowchart 42

T16 44 T8 40 description functional 22 general 2 pin 4

Е

EPROM selectable options 61 expanded register file 23 expanded register file architecture 25 expanded register file control registers 68 flag 77 interrupt mask register 76 interrupt priority register 75 interrupt request register 76 port 0 and 1 mode register 74 port 2 configuration register 72 port 3 mode register 73 port configuration register 72 reaister pointer 77 stack pointer high register 78 stack pointer low register 78 stop-mode recovery register 70 stop-mode recovery register 2 71 T16 control register 66 T8 and T16 common control functions register 64 T8/T16 control register 67 TC8 control register 62 watch-dog timer register 72

F

features standby modes 1 ZLP32300 1 functional description counter/timer functional blocks 37 CTR(D)01h register 32 CTR0(D)00h register 30 CTR2(D)02h register 34 CTR3(D)03h register 36 expanded register file 23 expanded register file architecture 25 HI16(D)09h register 29 HI8(D)0Bh register 29 L08(D)0Ah register 29 L0I6(D)08h register 29 program memory map 23 **RAM 22** register description 62 register file 27 register pointer 26 register pointer detail 28 SMR2(F)0D1h register 37 stack 28 TC16H(D)07h register 29 TC16L(D)06h register 30 TC8H(D)05h register 30 TC8L(D)04h register 30

G

glitch filter circuitry 37

Η

halt instruction, counter/timer 51

I

input circuit 37 interrupt block diagram, counter/timer 48 interrupt types, sources and vectors 49

L

low-voltage detection register 62

Μ

memory, program 22 modulo-N mode T16_OUT 44

T8_OUT 40

0

oscillator configuration 50 output circuit, counter/timer 46

Ρ

package information 20-pin DIP package diagram 79 20-pin SSOP package diagram 80 28-pin DIP package diagram 82 28-pin SOIC package diagram 81 28-pin SSOP package diagram 83 40-pin DIP package diagram 83 48-pin SSOP package diagram 84 pin configuration 20-pin DIP/SOIC/SSOP 5 28-pin DIP/SOIC/SSOP 6 40- and 48-pin 8 40-pin DIP 7 48-pin SSOP 8 pin functions port 0 (P07 - P00) 15 port 0 (P17 - P10) 16 port 0 configuration 16 port 1 configuration 17 port 2 (P27 - P20) 17 port 2 (P37 - P30) 18 port 2 configuration 18 port 3 configuration 19 port 3 counter/timer configuration 21 reset) 22 XTAL1 (time-based input 15 XTAL2 (time-based output) 15 ping-pong mode 45 port 0 configuration 16 port 0 pin function 15 port 1 configuration 17 port 1 pin function 16 port 2 configuration 18 port 2 pin function 17 port 3 configuration 19

port 3 pin function 18 port 3counter/timer configuration 21 port configuration register 52 power connections 3 power supply 5 program memory 22 map 23

R

ratings, absolute maximum 10 register 58 CTR(D)01h 32 CTR0(D)00h 30 CTR2(D)02h 34 CTR3(D)03h 36 flag 77 HI16(D)09h 29 HI8(D)0Bh 29 interrupt priority 75 interrupt request 76 interruptmask 76 L016(D)08h 29 L08(D)0Ah 29 LVD(D)0Ch 62 pointer 77 port 0 and 1 74 port 2 configuration 72 port 3 mode 73 port configuration 52, 72 SMR2(F)0Dh 37 stack pointer high 78 stack pointer low 78 stop mode recovery 54 stop mode recovery 2 58 stop-mode recovery 70 stop-mode recovery 2 71 T16 control 66 T8 and T16 common control functions 64 T8/T16 control 67 TC16H(D)07h 29 TC16L(D)06h 30 TC8 control 62 TC8H(D)05h 30

TC8L(D)04h 30 voltage detection 68 watch-dog timer 72 register description Counter/Timer2 LS-Byte Hold 30 Counter/Timer2 MS-Byte Hold 29 Counter/Timer8 Control 30 Counter/Timer8 High Hold 30 Counter/Timer8 Low Hold 30 CTR2 Counter/Timer 16 Control 34 CTR3 T8/T16 Control 36 Stop Mode Recovery2 37 T16 Capture LO 29 T8 and T16 Common functions 32 T8_Capture_HI 29 T8 Capture LO 29 register file 27 expanded 23 register pointer 26 detail 28 reset pin function 22 resets and WDT 60

S

SCLK circuit 55 single-pass mode T16_OUT 44 T8_OUT 40 stack 28 standard test conditions 10 standby modes 1 stop instruction, counter/timer 51 stop mode recovery 2 register 58 source 56 stop mode recovery 2 58 stop mode recovery 2 58

T

T16 transmit mode 43 T16_Capture_HI 29 T8 transmit mode 37 T8_Capture_HI 29 test conditions, standard 10 test load diagram 10 timing diagram, AC 13 transmit mode flowchart 38

V

VCC 5 voltage brown-out/standby 61 detection and flags 62 voltage detection register 68

W

watch-dog timer mode registerwatch-dog timer mode register 59 time select 60

X

XTAL1 5 XTAL1 pin function 15 XTAL2 5 XTAL2 pin function 15

Ζ

ZLP32300 family members 1