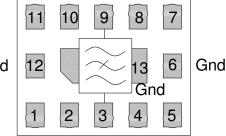


Applications

- B13 notch filter for SVLTE applications
- Applicable passbands: 836.5 MHz cell band, 881.5 MHz cell band, 751 MHz B13 LTE.
- Handsets

Product Features


- High linear notch filter
- Usable reject band 10 MHz
- Low loss in 824-849 MHz/869-894 MHz and 746-756 MHz
- High B13 attenuation
- Ceramic chip-scale Package (CSP)
- Small Size: 2.5 x 2.00 x 0.56 mm
- Hermetic **RoHS** compliant, **Pb**-free

Functional Block Diagram

Top view

Gnd Gnd Output Gnd Gnd

Gnd

Gnd Gnd Input Gnd Gnd

General Description

The 857061 is a high performance Surface Acoustic Wave (SAW) Notch Filter designed to reject emissions in the B13 band while passing Band 5 cell band.

857061 is specifically designed to enable simultaneous voice and LTE for Band 5 application. It is specified to support Band 5 requirements in the entire 824 - 894 MHz band.

The 857061 uses advanced packaging techniques to achieve an industry-leading 2.5 x 2.0 x 0.56 mm package. The filter exhibits excellent power handling capabilities.

Pin Configuration

Pin # SE-Balanced	Description
3	Input
9	Output
1,2,4,5,7,8,10,11	Ground
6,12,13	Case Ground

Ordering Information

Part No.	Description
857061	packaged part
857061-EVB	evaluation board

Standard T/R size = 10,000 units/reel.

- 1 of 6 -

Specifications

Electrical Specifications (1)

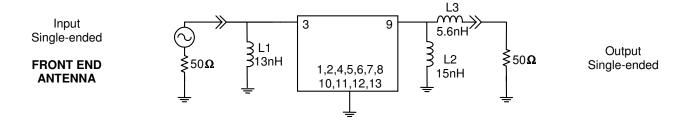
Specified Temperature Range: (2) -30 to +85 °C

Parameter (3)	Conditions	Min	Typical (4)	Max	Units
Center Frequency		-	782	-	MHz
Maximum Insertion Loss	746 – 756 MHz	-	1.0	1.5	dB
	824 – 849 MHz	-	0.6	1.0	dB
	869–894 MHz	-	0.6	1.0	dB
	746 – 756 MHz	-	0.25	0.5	dB p-p
Amplitude Variation ⁽⁶⁾	824 – 849 MHz	-	0.1	0.2	dB p-p
	869–894 MHz	-	0.1	0.2	dB p-p
Absolute Attenuation	777 – 787 MHz	20	24	-	dB
	1564 – 1574 MHz	3	4	-	dB
	1574 – 1577 MHz	3	4	-	dB
	2331 – 2361 MHz	5	7	-	dB
	2400 – 2484 MHz	5	7	-	dB
	746 – 756 MHz	10	14		dB
Input /Output Return Loss	824 – 849 MHz	13	18	-	dB
	869–894 MHz	13	18	-	uБ
IMD3 product (5)		-	-105		dBm
Source Impedance (single-ended) (5)		-	50	-	Ω
Load Impedance (single-ended) (5)		-	50	-	Ω

Notes:

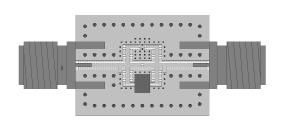
- 1. All specifications are based on the TriQuint schematic for the main reference design shown on page 3
- 2. In production, devices will be tested at room temperature to a guardbanded specification to ensure electrical compliance over temperature
- 3. Electrical margin has been built into the design to account for the variations due to temperature drift and manufacturing tolerances
- 4. Typical values are based on average measurements at room temperature
- 5. All power levels are referenced to the antenna port. Two CW tones are applied at frequencies f1 and f2, and the resultant intermodulation product in the 746-756 MHz band is measured. The first tone (f1 = 824-832 MHz, 24 dBm referenced to the antenna port) is applied at the output port (Duplexer). The second tone (f2 = f1-45 MHz, 13 dBm referenced to the antenna port) is applied at the input port (Antenna). The intermodulation product is measured at f1+45 MHz
- 6. Over a sliding 1.25 MHz window, in-band

Absolute Maximum Ratings (7)


Parameter	Rating
Operating Temperature	-30 to +85 °C
Storage Temperature	-40 to +85 °C
Input Power ⁽⁸⁾	+29 dBm

- 7. Operation of this device outside the parameter ranges given above may cause permanent damage.
- 8. All ports matched to 50 Ohms. (55°C, equivalent 5000 hours).

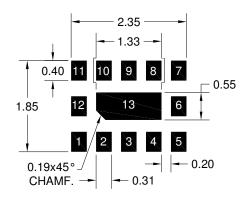
Reference Design 50Ω SE In, 50Ω SE Out


Schematic

Notes:

Actual matching values may vary due to PCB layout and parasitic

PC Board


Notes:

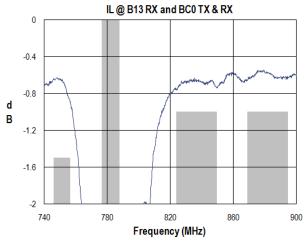
Top, middle & bottom layers: 1 oz copper Substrates: FR4 dielectric, .031" thick

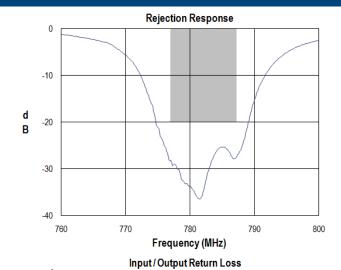
Finish plating: Nickel: $3\text{-}8\mu\text{m}$ thick, Gold: $.03\text{-}.2\mu\text{m}$ thick

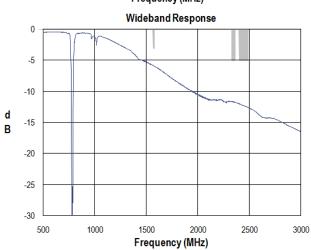
Hole plating: Copper min .0008µm thick

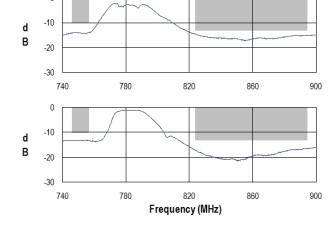
Mounting Configuration

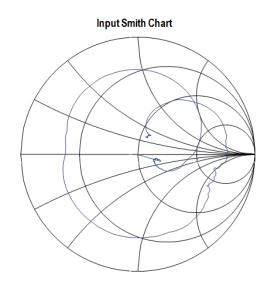
Notes:

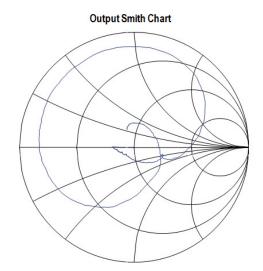

- 1. Top view of the product.
- 2. All dimensions are in millimeters.
- 3. This footprint represents a recommendation only.

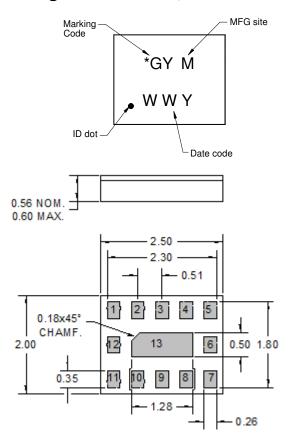

Bill of Material


Reference Desg.	Value	Description	Manufacturer	Part Number
L1	13 nH	Coil Wire-wound, 0402, y%	MuRata	LQW15AN13NH00
L2	15 nH	Coil Wire-wound, 0402, y%	MuRata	LQW15AN15NH00
L3	5.6 nH	Coil Wire-wound, 0402, y%	MuRata	LQW15AN5N6B00
SMA	N/A	SMA connector	Radiall USA Inc.	9602-1111-018
PCB	N/A	3-layer	Multiple	960930




Typical Performance (at room temperature)





Mechanical Information

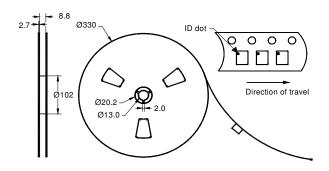
Package Information, Dimensions and Marking

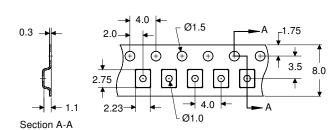
Package Style: CSP-10GT Dimensions: 2.5 x 2.00 x 0.56 mm

Body: Al_2O_3 ceramic

Lid: Kovar or Alloy 42, Au over Ni plated

Terminations: Au plating 0.5 - 1.0μm, over a 2-6μm Ni


plating


All dimensions shown are nominal in millimeters All tolerances are ± 0.15 mm except overall length and width ± 0.10 mm

The date code consists of: WW = 2 digit week, Y = last digit of year, M = manufacturing site code

Tape and Reel Information

Standard T/R size = 10,000 units/reel. All dimensions are in millimeters

Product Compliance Information

ESD Information

Caution! ESD-Sensitive Device

ESD Rating: 0

Value: Passes ≤ 150 V min.

Test: Human Body Model (HBM)

Standard: JEDEC Standard JESD22-A114

ESD Rating: M1

Value: Passes $\leq 100 \text{ V min.}$ Test: Machine Model (MM)

Standard: JEDEC Standard JESD22-A115

MSL Rating

Devices are Hermetic, therefore MSL is not applicable

Solderability

Compatible with the latest version of J-STD-020, lead free solder, 260°C

Refer to **Soldering Profile** for recommended guidelines.

This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

This product also has the following attributes:

- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A $(C_{15}H_{12}Br_4O_2)$ Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: <u>www.triquint.com</u> Tel: +1.407.886.8860 Email: <u>info-sales@tgs.com</u> Fax: +1.407.886.7061

For technical questions and application information:

Email: fl.product.engineering@tgs.com

Important Notice

The information contained herein is believed to be reliable. TriQuint makes no warranties regarding the information contain herein. TriQuint assumes no responsibility or liability whatsoever for any of the information contained herein. TriQuint assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for TriQuint products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

TriQuint products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.