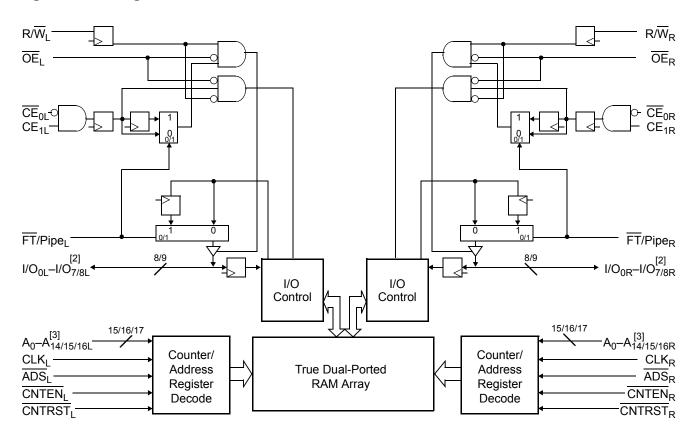


3.3 V 32 K/64 K/128 K × 8/9 Synchronous Dual-Port Static RAM

Features


- True Dual-Ported memory cells which enable simultaneous access of the same memory location
- Flow-through and Pipelined devices
- 32 K × 9 organizations (CY7C09179V)
- 64 K × 8 organizations (CY7C09089V)
- 128 K × 8/9 organizations (CY7C09099V/199V)
- 3 Modes
- Flow-through
- Pipelined
- Burst
- Pipelined output mode on both ports enables fast 100 MHz operation
- 0.35-micron CMOS for optimum speed and power

- High speed clock to data access 6.5^[1]/7.5^[1]/9/12 ns (max.)
- 3.3 V low operating power
- Active = 115 mA (typical)
- Standby = 10 µA (typical)
- Fully synchronous interface for easier operation
- Burst counters increment addresses internally
- Shorten cycle times
- Minimize bus noise
- Supported in Flow-through and Pipelined modes
- Dual Chip Enables for easy depth expansion
- Automatic power down
- Commercial and Industrial temperature ranges
- Available in 100-pin TQFP
- Pb-free packages available

1. See page 9 and page 10 for Load Conditions.

Logic Block Diagram

- $\begin{array}{ll} \textbf{Notes} \\ 2. & \text{I/O}_0 \text{-I/O}_7 \text{ for } \times 8 \text{ devices, I/O}_0 \text{-I/O}_8 \text{ for } \times 9 \text{ devices.} \\ 3. & \text{A}_0 \text{-A}_{14} \text{ for } 32 \text{K, A}_0 \text{-A}_{15} \text{ for } 64 \text{K, and A}_0 \text{-A}_{16} \text{ for } 128 \text{K devices.} \\ \end{array}$

Functional Description

The CY7C09089V/99V and CY7C09179V/99V are high speed synchronous CMOS 64 K/128 K × 8 and 32 K/128 K × 9 dual-port static RAMs. Two ports are provided, permitting independent, simultaneous access for reads and writes to any location in memory. [4] Registers on control, address, and data lines enable minimal setup and hold times. In pipelined output mode, data is registered for decreased cycle time. Clock to data valid $t_{\rm CD2}$ = 6.5 $ns^{[5]}$ (pipelined). Flow-through mode can also be used to bypass the pipelined output register to eliminate access latency. In flow-through mode, data is available $t_{\rm CD1}$ = 18 ns after the address is clocked into the device. Pipelined output or flow-through mode is selected via the FT/Pipe pin.

Each port contains a burst counter on the input address register. The internal write pulse width is independent of the LOW-to-HIGH transition of the clock signal. The internal write pulse is self-timed to enable the shortest possible cycle times.

A HIGH on $\overline{\text{CE}}_0$ or LOW on CE_1 for one clock cycle powers down the internal circuitry to reduce the static power consumption. The use of multiple Chip Enables enables easier banking of multiple chips for depth expansion <u>configurations</u>. In the pipelined mode, one cycle is required with $\overline{\text{CE}}_0$ LOW and CE_1 HIGH to reactivate the outputs.

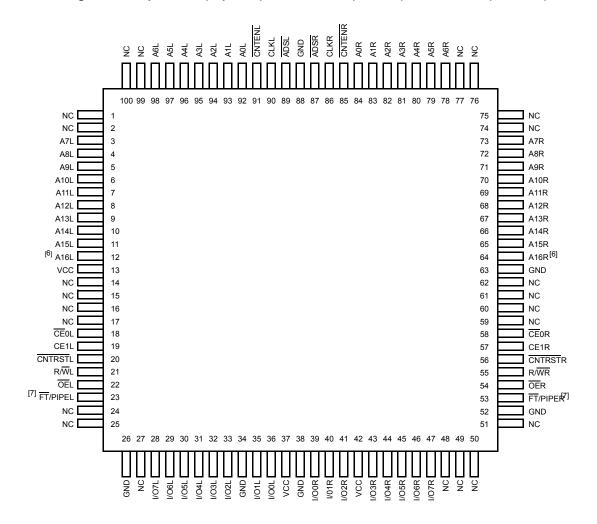
Counter enable inputs are provided to stall the operation of the address input and use the internal address generated by the internal counter for fast interleaved memory applications. A port's burst counter is loaded with the port's Address Strobe (ADS). When the port's Count Enable (CNTEN) is asserted, the address counter increments on each LOW-to-HIGH transition of that port's clock signal. This reads/writes one word from/into each successive address location until CNTEN is deasserted. The counter can address the entire memory array and loops back to the start. Counter Reset (CNTRST) is used to reset the burst counter.

All parts are available in 100-pin Thin Quad Plastic Flatpack (TQFP) packages.

- 4. When writing simultaneously to the same location, the final value cannot be guaranteed.
- 5. See page 9 and page 10 for Load Conditions.

CY7C09089V/99V CY7C09179V/99V

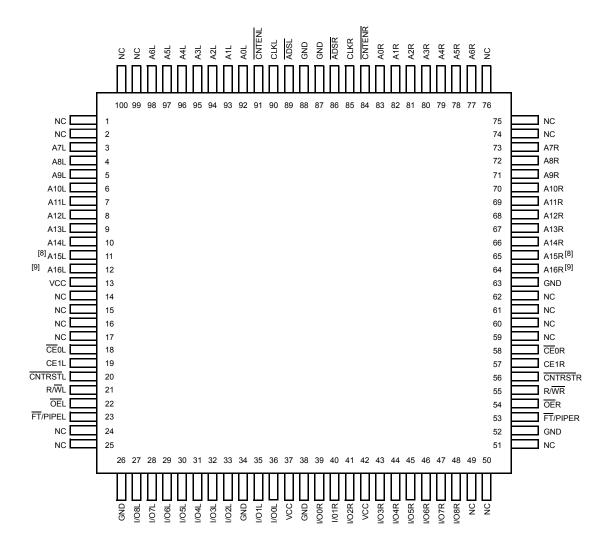
Contents


Pin Configurations	5
Selection Guide	7
Pin Definitions	7
Maximum Ratings	8
Operating Range	8
Electrical Characteristics	
Capacitance	9
Switching Characteristics	11
Switching Waveforms	12
Read/Write and Enable Operation	
Address Counter Control Operation	23
Ordering Information	24
64 K × 8 3.3 V Synchronous Dual-Port SRAM	
128 K × 8 3.3 V Synchronous Dual-Port SRAM	24

32 K × 9 3.3 V Synchronous Dual-Port SRAM	24
128 K × 9 3.3 V Synchronous Dual-Port SRAM	24
Ordering Code Definitions	24
Package Diagram	
Acronyms	26
Document Conventions	
Units of Measure	26
Document History Page	27
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	
Products	
PSoC Solutions	

Pin Configurations

Figure 1. 100-pin TQFP (Top View) - CY7C09089V (64 K × 8), CY7C09099V (128 K × 8)



^{6.} This pin is NC for CY7C09089V.

^{7.} For CYTC09089V, pin #23 connected to V_{CC} is pin compatible with an IDT 5 V, ×8 pipelined device; connecting pin #23 and #53 to GND is pin compatible with an IDT 5 V, ×16 flow-through device.

Figure 2. 100-pin TQFP (Top View) - CY7C09179V (32 K × 9), CY7C09199V (128 K × 9)

Notes

8. This pin is NC for CY7C09179V.

9. This pin is NC for CY7C09179V and CY7C09189V.

Selection Guide

Description	CY7C09179V -6 ^[10]	CY7C09099V -7 ^[10]	CY7C09199V -9	CY7C09089V/99V CY7C09179V -12
f _{MAX2} (MHz) (Pipelined)	100	83	67	50
Max. Access Time (ns) (Clock to Data, Pipelined)	6.5	7.5	9	12
Typical Operating Current I _{CC} (mA)	175	155	135	115
Typical Standby Current for I _{SB1} (mA) (Both Ports TTL Level)	25	25	20	20
Typical Standby Current for I_{SB3} (μA) (Both Ports CMOS Level)	10	10	10	10

Pin Definitions

Left Port	Right Port	Description
A _{0L} -A _{16L}	A _{0R} -A _{16R}	Address Inputs (A_0 – A_{14} for 32K; A_0 – A_{15} for 64K; and A_0 – A_{16} for 128K devices).
ADS _L	ADS _R	Address Strobe Input. Used as an address qualifier. This signal should be asserted LOW to access the part using an externally supplied address. Asserting this signal LOW also loads the burst counter with the address present on the address pins.
CE _{0L} , CE _{1L}	CE _{0R} , CE _{1R}	Chip Enable Input. To select either the left or right port, both \overline{CE}_0 AND CE_1 must be asserted to their active states ($\overline{CE}_0 \le V_{IL}$ and $CE_1 \ge V_{IH}$).
CLK _L	CLK _R	Clock Signal. This input can be free running or strobed. Maximum clock input rate is f _{MAX} .
CNTEN _L	CNTEN _R	Counter Enable Input. Asserting this signal LOW increments the burst address counter of its respective port on each rising edge of CLK. CNTEN is disabled if ADS or CNTRST are asserted LOW.
CNTRST _L	CNTRST _R	Counter Reset Input. <u>Asserting</u> this signal LOW resets the <u>burst address</u> counter of its respective port to zero. CNTRST is not disabled by asserting ADS or CNTEN.
I/O _{0L} –I/O _{8L}	I/O _{0R} –I/O _{8R}	Data Bus Input/Output (I/O ₀ –I/O ₇ for ×8 devices; I/O ₀ –I/O ₈ for ×9 devices).
ŌEL	ŌĒ _R	Output Enable Input. This signal must be asserted LOW to enable the I/O data pins during read operations.
R/W _L	R/W _R	Read/Write Enable Input. This signal is asserted LOW to write to the dual port memory array. For read operations, assert this pin HIGH.
FT/PIPE _L	FT/PIPE _R	Flow-Through/Pipelined Select Input. For flow-through mode operation, assert this pin LOW. For pipelined mode operation, assert this pin HIGH.
GND		Ground Input.
NC		No Connect.
V _{CC}		Power Input.

10. See page 9 and page 10 for Load Conditions.

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested. $^{[11]}$

Storage Temperature -65 °C to +150 °C Ambient Temperature with Power Applied -55 °C to +125 °C Supply Voltage to Ground Potential -0.5 V to +4.6 V DC Voltage Applied to Outputs in High Z State -0.5 V to V_{CC} + 0.5 V DC Input Voltage -0.5 V to V_{CC} + 0.5 V

Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage	> 2001 V
Latch-Up Current	> 200 mA

Operating Range

Range	Ambient Temperature	V _{cc}
Commercial	0 °C to +70 °C	3.3 V ± 300 mV
Industrial ^[12]	–40 °C to +85 °C	$3.3~\text{V} \pm 300~\text{mV}$

Electrical Characteristics

Over the Operating Range

			CY7C09079V/89V/99V CY7C09179V/89V/99V												
Parameter	Description			-6 ^[13]			-7 ^[13]			-9	9 -12				
			Min	Тур	Мах	Min	Тур	Мах	Min	Тур	Мах	Min	Тур	Мах	Unit
V _{OH}	Output HIGH Voltage (V_{CC} : $I_{OH} = -4.0 \text{ mA}$)	= Min.,	2.4	_	_	2.4	_	_	2.4	_	-	2.4	-	_	V
V _{OL}	Output LOW Voltage ($V_{CC} = I_{OH} = +4.0 \text{ mA}$)	= Min.,	_		0.4	-		0.4	_		0.4	_		0.4	V
V _{IH}	Input HIGH Voltage		2.0		_	2.0		_	2.0		-	2.0		_	V
V _{IL}	Input LOW Voltage		_		0.8	_		0.8	_		0.8	_		8.0	V
I _{OZ}	Output Leakage Current		-10		10	-10		10	-10		10	-10		10	μΑ
I _{CC}	Operating Current	Commercial	_	175	320	_	155	275	_	135	225	_	115	205	mA
	(V _{CC} = Max., I _{OUT} = 0 mA) Outputs Disabled	Industrial ^[12]		-	_		275	390		185	295		-	_	mA
I _{SB1}	Standby Current	Commercial		25	95		25	85		20	65		20	50	mA
	(Both Ports TTL Level) ^[14] $CE_L \& CE_R \ge V_{IH}, f = f_{MAX}$	Industrial ^[12]		-	_		85	120		35	75		-	_	mA
I _{SB2}	Standby Current	Commercial		115	175		105	165		95	150		85	140	mA
	(One Port TTL Level) ^[14] $CE_L \mid CE_R \ge V_{IH}$, $f = f_{MAX}$	Industrial ^[12]		-	_		165	210		105	160		-	_	mA
I _{SB3}	Standby Current	Commercial		10	250		10	250		10	250		10	250	μΑ
	(Both Ports CMOS Level) ^[14] $CE_L \& CE_R \ge V_{CC} - 0.2 \text{ V},$ f = 0	Industrial ^[12]		-	-		10	250		10	250		-	-	μА
I _{SB4}	Standby Current	Commercial	1	105	135		95	125		85	115		75	100	mA
	$\frac{(One\ Port\ CMOS\ Level)^{[14]}}{CE_L\ \ CE_R\ge V_{IH},\ f=f_{MAX}}$	Industrial ^[12]		-	_		125	170		95	125		_	_	mA

^{11.} The Voltage on any input or I/O pin cannot exceed the power pin during power-up.

^{12.} Industrial parts are available in CY7C09099V and CY7C09199V only.

^{13.} See page 9 and page 10 for Load Conditions.

^{14.} $\overline{CE_L}$ and $\overline{CE_R}$ are internal signals. To select either the left or right port, both $\overline{CE_0}$ AND $\overline{CE_1}$ must be asserted to their active states ($\overline{CE_0} \le V_{IL}$ and $\overline{CE_1} \ge V_{IH}$).

Capacitance

Parameter	Description	Test Conditions	Max	Unit
C _{IN}	Input Capacitance	$T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz}, V_{CC} = 3.3 \text{V}$	10	pF
C _{OUT}	Output Capacitance		10	pF

Figure 3. AC Test Loads

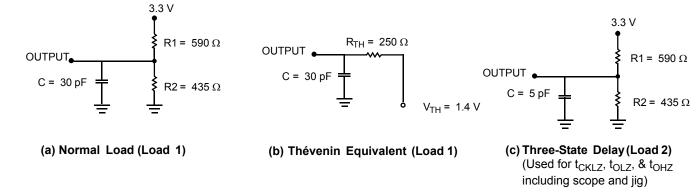


Figure 4. AC Test Loads (Applicable to -6 and -7 only)^[15]

(a) Load 1 (-6 and -7 only)

15. Test Conditions: C = 10 pF.

Figure 5. Load Derating Curve

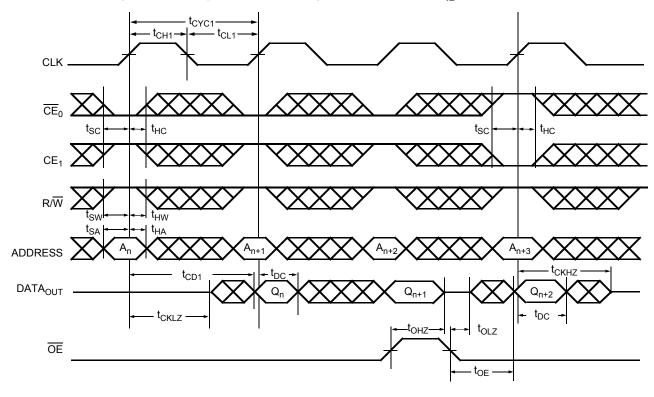
Document Number: 38-06043 Rev. *G

Switching Characteristics

Over the Operating Range

					7C09079					
Parameter	Description	-6	[16]	-7	[16]	-	9		12	Unit
		Min	Max	Min	Max	Min	Max	Min	Max	
f _{MAX1}	f _{Max} Flow-through	_	53	_	45	_	40	_	33	MHz
f _{MAX2}	f _{Max} Pipelined	_	100	_	83	_	67	_	50	MHz
t _{CYC1}	Clock Cycle Time - Flow-through	19	_	22	_	25	_	30	_	ns
t _{CYC2}	Clock Cycle Time - Pipelined	10	_	12	_	15	_	20	_	ns
t _{CH1}	Clock HIGH Time - Flow-through	6.5	_	7.5	_	12	_	12	_	ns
t _{CL1}	Clock LOW Time - Flow-through	6.5	_	7.5	_	12	_	12	_	ns
t _{CH2}	Clock HIGH Time - Pipelined	4	_	5	_	6	_	8	_	ns
t _{CL2}	Clock LOW Time - Pipelined	4	_	5	_	6	_	8	_	ns
t _R	Clock Rise Time	_	3	_	3	_	3	_	3	ns
t _F	Clock Fall Time	_	3	_	3	_	3	_	3	ns
t _{SA}	Address Set-Up Time	3.5	_	4	_	4	_	4	_	ns
t _{HA}	Address Hold Time	0	_	0	_	1	_	1	_	ns
t _{SC}	Chip Enable Set-Up Time	3.5	_	4	_	4	_	4	_	ns
t _{HC}	Chip Enable Hold Time	0	_	0	_	1	_	1	_	ns
t _{SW}	R/W Set-Up Time	3.5	_	4	_	4	_	4	_	ns
t _{HW}	R/W Hold Time	0	_	0	_	1	_	1	_	ns
t _{SD}	Input Data Set-Up Time	3.5	_	4	_	4	_	4	_	ns
t _{HD}	Input Data Hold Time	0	_	0	_	1	_	1	_	ns
t _{SAD}	ADS Set-Up Time	3.5	_	4	_	4	_	4	_	ns
t _{HAD}	ADS Hold Time	0	_	0	_	1	_	1	_	ns
t _{SCN}	CNTEN Set-Up Time	3.5	_	4.5	_	5	_	5	_	ns
t _{HCN}	CNTEN Hold Time	0	_	0	_	1	_	1	_	ns
t _{SRST}	CNTRST Set-Up Time	3.5	_	4	_	4	_	4	_	ns
t _{HRST}	CNTRST Hold Time	0	_	0	_	1	_	1	_	ns
t _{OE}	Output Enable to Data Valid	_	8	_	9	_	10	_	12	ns
t _{OLZ} ^[17, 18]	OE to Low Z	2	_	2	_	2	_	2	_	ns
t _{OHZ} ^[17, 18]	OE to High Z	1	7	1	7	1	7	1	7	ns
t _{CD1}	Clock to Data Valid - Flow-through	_	15	_	18	_	20	_	25	ns
t _{CD2}	Clock to Data Valid - Pipelined	_	6.5	_	7.5	_	9	_	12	ns
t _{DC}	Data Output Hold After Clock HIGH	2	_	2	_	2	_	2	_	ns
t _{CKHZ} ^[17, 18]	Clock HIGH to Output High Z	2	9	2	9	2	9	2	9	ns
t _{CKLZ} ^[17, 18]	Clock HIGH to Output Low Z	2	_	2	-	2	-	2	-	ns

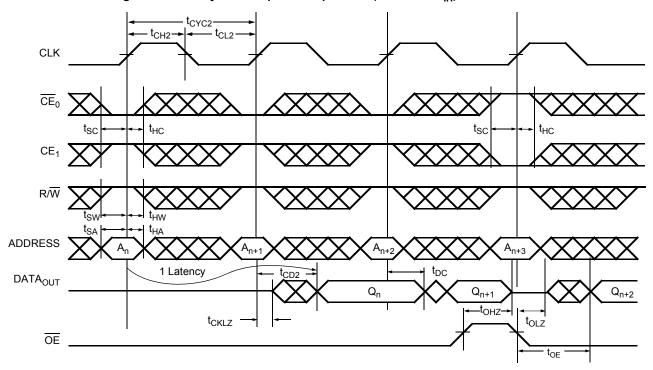
^{16.} See page 9 and page 10 for Load Conditions.
17. Test conditions used are Load 2.
18. This parameter is guaranteed by design, but it is not production tested.


Switching Characteristics (continued)

Over the Operating Range

_					7C09079 7C09179					
Parameter	Description	-6 ^l	[16]	-7	[16]	-	9	-1	2	Unit
		Min	Max	Min	Max	Min	Max	Min	Max	
Port to Port	Delays									
t _{CWDD}	Write Port Clock HIGH to Read Data Delay	-	30	-	35	-	40	-	40	ns
t _{CCS}	Clock to Clock Set-Up Time	-	9	-	10	-	15	-	15	ns

Switching Waveforms

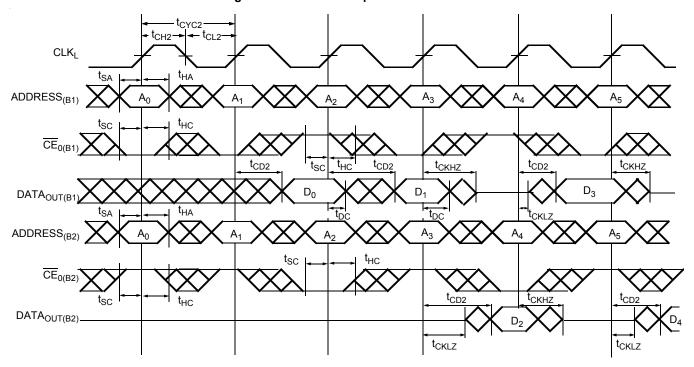

Figure 6. Read Cycle for Flow-through Output $(\overline{FT}/PIPE = V_{IL})^{[19, 20, 21, 22]}$

^{19. &}lt;u>OE</u> is asynchronously controlled; all other inputs are synchronous to the rising clock edge.
20. <u>ADS</u> = V_{IL}, <u>CNTEN</u> and <u>CNTRST</u> = V_{IH}.
21. The output is disabled (high-impedance state) by <u>CE</u>₀ = V_{IH} or CE₁ = V_{IL} following the next rising edge of the clock.
22. Addresses do not have to be accessed sequentially since ADS = V_{IL} constantly loads the address on the rising edge of the CLK. Numbers are for reference only.

Figure 7. Read Cycle for Pipelined Operation ($\overline{\text{FT}}/\text{PIPE} = \text{V}_{\text{IH}}$)[23, 24, 25, 26]

Notes

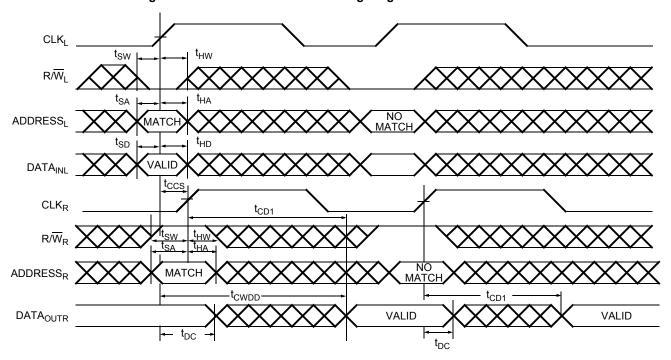
23. OE is asynchronously controlled; all other inputs are synchronous to the rising clock edge.


24. ADS = V_{IL}, CNTEN and CNTRST = V_{IH}.

25. The output is disabled (high-impedance state) by CE₀ = V_{IH} or CE₁ = V_{IL} following the next rising edge of the clock.

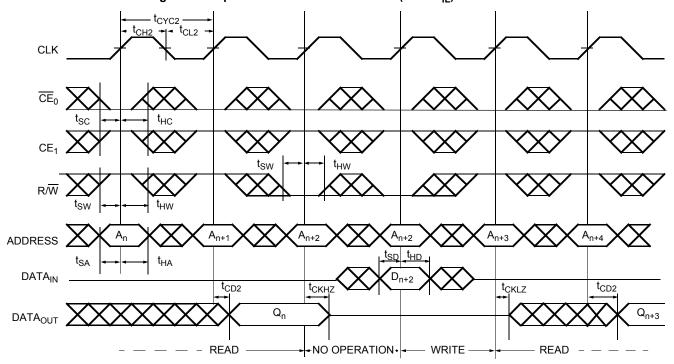
26. Addresses do not have to be accessed sequentially since ADS = V_{IL} constantly loads the address on the rising edge of the CLK. Numbers are for reference only.

Figure 8. Bank Select Pipelined Read^[27, 28]


^{27.} In this depth expansion example, B1 represents Bank #1 and B2 is Bank #2; Each Bank consists of one Cypress dual-port device from this datasheet.

ADDRESS_(B1) = ADDRESS_(B2).

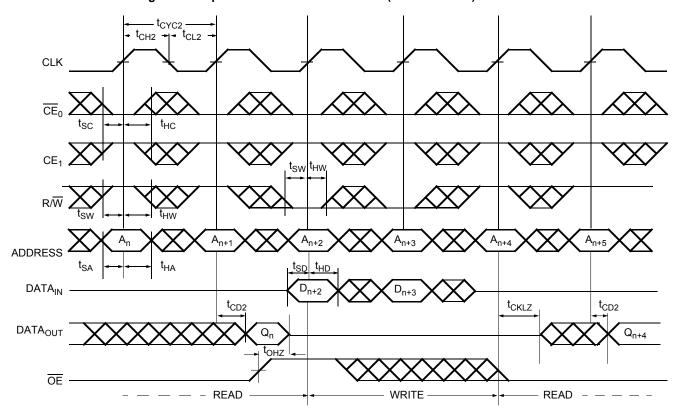
28. OE and ADS = V_{IL}; CE_{1(B1)}, CE_{1(B2)}, R/W, CNTEN, and CNTRST = V_{IH}.


Figure 9. Left Port Write to Flow-through Right Port Read [29, 30, 31, 32]

^{29.} The same waveforms apply for a right port write to flow-through left port read.
30. CE_D and ADS = V_{IL}; CE₁, CNTEN, and CNTRST = V_{IH}.
31. OE = V_{IL} for the right port, which is being read from. OE = V_{IH} for the left port, which is being written to.
32. It t_{CCS} ≤ maximum specified, then data from right port READ is not valid until the maximum specified for t_{CWDD}. If t_{CCS} > maximum specified, then data is not valid until t_{CCS} + t_{CD1}. t_{CWDD} does not apply in this case.

Figure 10. Pipelined Read-to-Write-to-Read ($\overline{\text{OE}}$ = V_{IL})[33, 34, 35, 36]

^{33.} Addresses do not have to be accessed sequentially since $\overline{ADS} = V_{IL}$ constantly loads the address on the rising edge of the CLK. Numbers are for reference only.

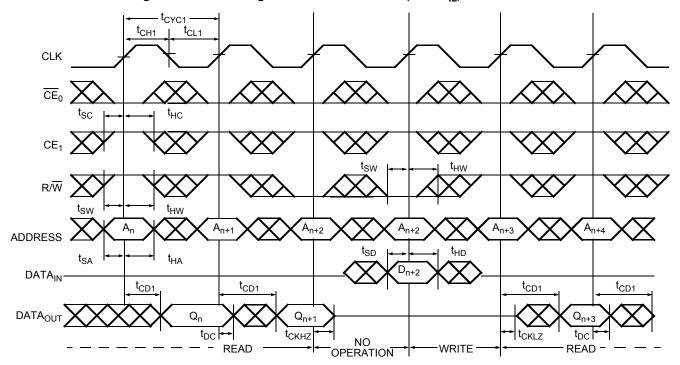

34. Output state (HIGH, LOW, or high-impedance) is determined by the previous cycle control signals.

35. \overline{CE}_0 and $\overline{ADS} = V_{IL}$; \overline{CNTEN} , and $\overline{CNTEST} = V_{IH}$.

36. During "No Operation", data in memory at the selected address may be corrupted and should be re-written to ensure data integrity.

Figure 11. Pipelined Read-to-Write-to-Read ($\overline{\text{OE}}$ Controlled) $^{[37,\ 38,\ 39,\ 40]}$

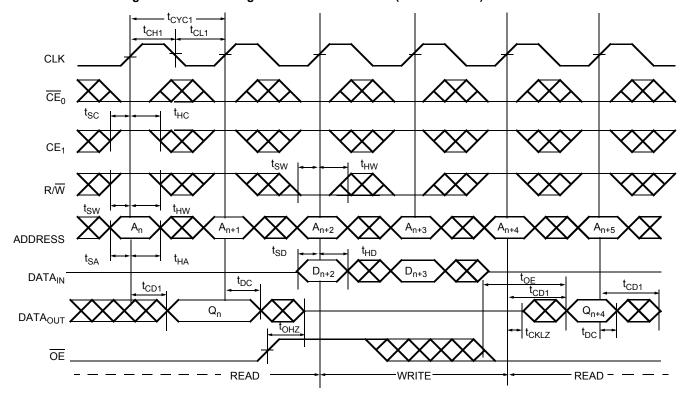
^{37.} Addresses do not have to be accessed sequentially since ADS = V_{II} constantly loads the address on the rising edge of the CLK. Numbers are for reference only.


^{38.} Output state (HIGH, LOW, or high-impedance) is determined by the previous cycle control signals.

39. CE₀ and ADS = V_{IL}; CE₁, CNTEN, and CNTRST = V_{IH}.

40. During "No Operation", data in memory at the selected address may be corrupted and should be re-written to ensure data integrity.

Figure 12. Flow-through Read-to-Write-to-Read ($\overline{\text{OE}} = \text{V}_{\text{IL}}$)[41, 42, 43, 44, 45]


^{41.} ADS = V_{IL}, CNTEN and CNTRST = V_{IH}.
42. Addresses do not have to be accessed sequentially since ADS = V_{IL} constantly loads the address on the rising edge of the CLK. Numbers are for reference only.

^{43.} Output state (HIGH, LOW, or high-impedance) is determined by the previous cycle control signals.

^{44.} CE₀ and ADS = V_{IL}; CE₁, CNTEN, and CNTRST = V_{IH}.
45. During "No Operation", data in memory at the selected address may be corrupted and should be re-written to ensure data integrity.

Figure 13. Flow-through Read-to-Write-to-Read ($\overline{\text{OE}}$ Controlled)[46, 47, 48, 49, 50]

^{46.} ADS = V_{IL}, CNTEN and CNTRST = V_{IH}.

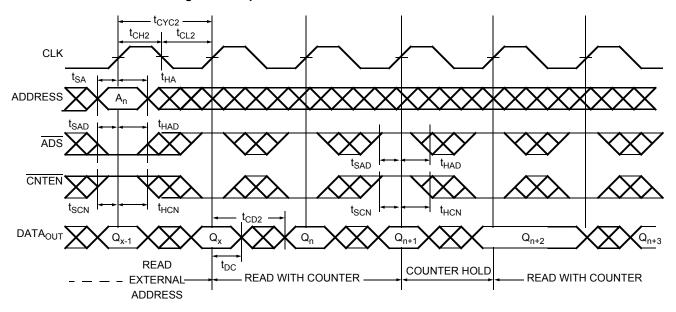
47. In this depth expansion example, B1 represents Bank #1 and B2 is Bank #2; Each Bank consists of one Cypress dual-port device from this datasheet. ADDRESS_(B1) = ADDRESS_(B2).

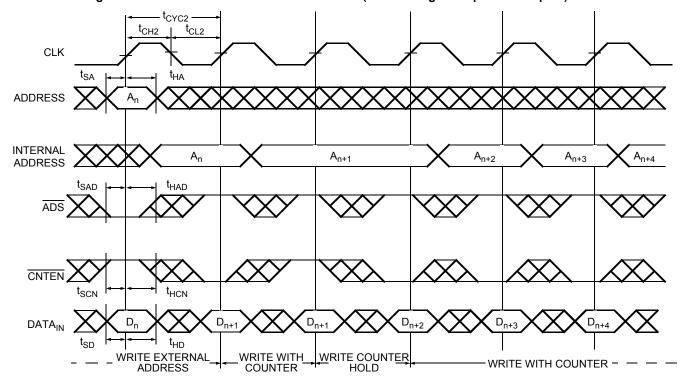
48. Output state (HIGH, LOW, or high-impedance) is determined by the previous cycle control signals.

49. CE₀ and ADS = V_{IL}; CE₁, CNTEN, and CNTRST = V_{IH}.

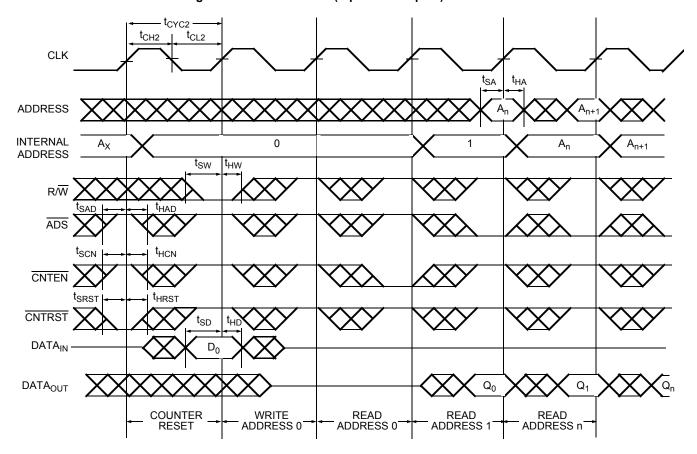
^{50.} During "No Operation", data in memory at the selected address may be corrupted and should be re-written to ensure data integrity.

Figure 14. Pipelined Read with Address Counter Advance^[51]





Figure 15. Flow-through Read with Address Counter Advance $^{[51]}$

Note 51. \overline{CE}_0 and \overline{OE} = V_{IL} ; CE_1 , R/\overline{W} and \overline{CNTRST} = V_{IH} .


Figure 16. Write with Address Counter Advance (Flow-through or Pipelined Outputs)^[52, 53]

Notes
52. \overline{CE}_0 and $R/\overline{W} = V_{IL}$; CE_1 and $\overline{CNTRST} = V_{IH}$.
53. The "Internal Address" is equal to the "External Address" when $\overline{ADS} = V_{IL}$ and equals the counter output when $\overline{ADS} = V_{IH}$.

Figure 17. Counter Reset (Pipelined Outputs)^[54, 55, 56, 57]

^{54.} Addresses do not have to be accessed sequentially since $\overline{ADS} = V_{IL}$ constantly loads the address on the rising edge of the CLK. Numbers are for reference only. 55. Output state (HIGH, LOW, or high-impedance) is determined by the previous cycle control signals. 56. $\overline{CE}_0 = V_{IL}$; $\overline{CE}_1 = V_{IH}$.

^{57.} No dead cycle exists during counter reset. A READ or WRITE cycle may be coincidental with the counter reset.

Read/Write and Enable Operation [58, 59, 60]

		Inputs			Outputs	
OE	CLK	CE ₀	CE ₁	R/W	I/O ₀ –I/O ₉	Operation
Х		Н	Х	Х	High Z	Deselected ^[61]
Х	7	Х	L	X	High Z	Deselected ^[61]
Х	7	L	Н	L	D _{IN}	Write
L	7	L	Н	Н	D _{OUT}	Read ^[61]
Н	Х	L	Н	Х	High Z	Outputs Disabled

Address Counter Control Operation [58, 62, 63, 64]

Address	Previous Address	CLK	ADS	CNTEN	CNTRST	I/O	Mode	Operation
X	Х		Х	X	L	D _{out(0)}	Reset	Counter Reset to Address 0
A _n	Х		L	Х	Н	D _{out(n)}	Load	Address Load into Counter
Х	A _n	7	Н	Н	Н	D _{out(n)}	Hold	External Address Blocked—Counter Disabled
Х	A _n		Н	L	Н	D _{out(n+1)}	Increment	Counter Enabled—Internal Address Generation

Notes

58. "X" = "Don't Care", "H" = V_{IH}, "L" = V_{IL}.

59. ADS, CNTEN, CNTRST = "Don't Care."

60. OE is an asynchronous input signal.

61. When CE changes state in the pipelined mode, deselection and read happen in the following clock cycle.

62. CE₀ and OE = V_{IL}; CE₁ and R/W = V_{IH}.

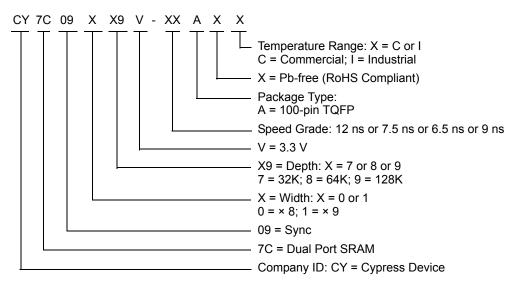
63. Data shown for flow-through mode; pipelined mode output will be delayed by one cycle.

64. Counter operation is independent of CE₀ and CE₁.

Ordering Information

The following table contains only the parts that are currently available. If you do not see what you are looking for, contact your local sales representative. For more information, visit the Cypress website at www.cypress.com/products and refer to the product summary page at http://www.cypress.com/products

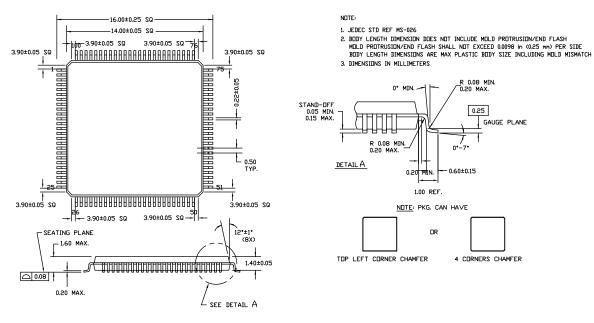
Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives and distributors. To find the office closest to you, visit us at http://www.cypress.com/go/datasheet/offices.


128 K × 8 3.3 V Synchronous Dual-Port SRAM

Speed (ns)	Ordering Code	Ordering Code Package Name Package Type		Operating Range
7.5 ^[65]	CY7C09099V-7AXI	A100	100-pin Thin Quad Flat Pack (Pb-free)	Industrial
12	CY7C09099V-12AXC	A100	100-pin Thin Quad Flat Pack (Pb-free)	Commercial

32 K × 9 3.3 V Synchronous Dual-Port SRAM

Speed (ns)	Ordering Code Package Name Package Type		Operating Range	
12	CY7C09179V-12AXC	A100	100-pin Thin Quad Flat Pack (Pb-free)	Commercial


Ordering Code Definitions

Package Diagram

Figure 18. 100-pin TQFP 14 × 14 × 1.4 mm A100SA, 51-85048

51-85048 *G

Acronyms

Acronym	Description
CMOS	complementary metal oxide semiconductor
I/O	input/output
ŌĒ	output enable
SRAM	static random access memory
TQFP	thin quad flat pack
TTL	transistor transistor logic
WE	write enable

Document Conventions

Units of Measure

Symbol	Unit of Measure	
°C	degree Celcius	
MHz	Mega Hertz	
μΑ	micro Amperes	
mA	milli Amperes	
mm	milli meter	
ms	milli seconds	
mV	milli Volts	
ns	nano seconds	
Ω	Ohms	
%	percent	
pF	pico Farad	
V	Volts	
W	Watts	

Document History Page

Rev.	ECN No.	Orig. of Change	Orig. of Change	Description of Change
**	110191	SZV	09/29/01	Change from Spec number: 38-00667 to 38-06043
*A	122293	RBI	12/27/02	Power up requirements added to Operating Conditions Information
*B	365034	PCN	See ECN	Added Pb-Free Logo Added Pb-Free Part Ordering Information: CY7C09089V-6AXC, CY7C09089V-12AXC, CY7C09099V-6AXC, CY7C09099V-7AI, CY7C09099V-7AXI, CY7C09099V-12AXC, CY7C09179V-6AXC, CY7C09179V-12AXC, CY7C09189V-6AXC, CY7C09189V-12AXC, CY7C09199V-6AXC, CY7C09199V-7AXC, CY7C09199V-9AXC, CY7C09199V-9AXI, CY7C09199V-12AXC
*C	2623658	VKN/PYRS	12/17/08	Added CY7C09089V-12AXI part in the Ordering information table
*D	2897159	RAME	03/22/10	Removed inactive parts from ordering information table. Updated packa diagram. Added Note in ordering information section.
*E	3110406	ADMU	12/14/2010	Updated Ordering Information. Added Ordering Code Definitions.
*F	3264673	ADMU	05/24/2011	Updated Document Title to read "CY7C09089V/99V, CY7C09179V/99 3.3 V 32 K/64 K/128 K × 8/9 Synchronous Dual-Port Static RAM". Updated Features. Updated Pin Configurations (Removed the Note "This pin is NC for CY7C09079V." in page 5). Updated Selection Guide. Updated Package Diagram. Added Acronyms and Units of Measure. Updated in new template.
*G	3849285	ADMU	12/21/2012	Updated Ordering Information (Updated part numbers). Updated Package Diagram: spec 51-85048 – Changed revision from *E to *G.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at cypress.com/sales.

Products

Automotive cypre
Clocks & Buffers cyp
Interface cypre
Lighting & Power Control cypre

Memory
Optical & Image Sensing
PSoC
Touch Sensing
USB Controllers
Wireless/RF

cypress.com/go/automotive cypress.com/go/clocks cypress.com/go/interface cypress.com/go/powerpsoc

cypress.com/go/memory cypress.com/go/image cypress.com/go/psoc cypress.com/go/touch cypress.com/go/USB cypress.com/go/wireless

PSoC Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5

© Cypress Semiconductor Corporation, 2001-2012. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.