For the electronic measurement of currents : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

CE

E	lectrical data						
I _{PN}	Primary nominal r.m.s. current			100			A
I _P	Primary current, measuring range			0 ± 150			Α
Ŕ	Measuring resistance @		T _A =	$T_{A} = 70^{\circ}C T_{A} = 85^{\circ}C$;
			$R_{_{Mmin}}$	$\mathbf{R}_{_{\mathrm{M}\mathrm{max}}}$	R _{M min}	$\mathbf{R}_{M \max}$	
	with ± 12 V	@ ± 100 A _{max}	0	50	0	42	Ω
		@ ± 120 A _{max}	0	22	0	14	Ω
	with ± 15 V	@ ± 100 A _{max}	0	110	20	102	Ω
		@ ± 150 A _{max}	0	33	20	25	Ω
SN SN	Secondary nominal r.m.s.	current		50			mΑ
κ _N	Conversion ratio			1:2000			
v _c	Supply voltage (± 5 %)			± 12 15			V
I _c	Current consumption 10(@±15V)+I				V)+ I s	mΑ	
V _d	R.m.s. voltage for AC isola	e for AC isolation test, 50 Hz, 1 mn 2.5				kV	
A	ccuracy - Dynamic pe	erformance da	ta				
Х	Accuracy @ I_{PN} , $T_{A} = 25^{\circ}C$	2 @ ± 15 V	(±5%)	± 0	.45		%
		@ ± 12 15 V	(±5%)	± 0	.70		%
e	Linearity			< 0	.15		%

e _	Linearity	< 0.15	%							
I _o	Offset current @ $I_p = 0$, $T_A = 25^{\circ}C$	everleed of 2 x l	Typ Max ± 0.10							
I _{ом} I _{от}	Residual current ¹⁾ @ $I_p = 0$, after ar Thermal drift of I_o	- 25°C + 85°C - 40°C 25°C	± 0.15 $\pm 0.05 \pm 0.25$ $\pm 0.10 \pm 0.50$	mA						
t _{ra} t _r di/dt f	Reaction time @ 10 % of I _{PN} Response time ²⁾ @ 90 % of I _{PN} li/dt accurately followed Frequency bandwidth (- 1 dB)		< 500 < 1 > 200 DC 200	ns µs A/µs kHz						
General data										
T _A T _s R _s	Ambient operating temperature Ambient storage temperature Secondary coil resistance @	$\mathbf{T}_{A} = 70^{\circ}\mathrm{C}$	- 40 + 85 - 50 + 95 120	°C ℃ Ω						
m	Mass	$\mathbf{T}_{A} = 70 \text{ C}$ $\mathbf{T}_{A} = 85^{\circ}\text{C}$	128 18	Ω g						
	Standards ³⁾		EN 50178 : 19	997						

 $I_{PN} = 100 A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Printed circuit board mounting
- Insulated plastic case recognized according to UL 94-V0.

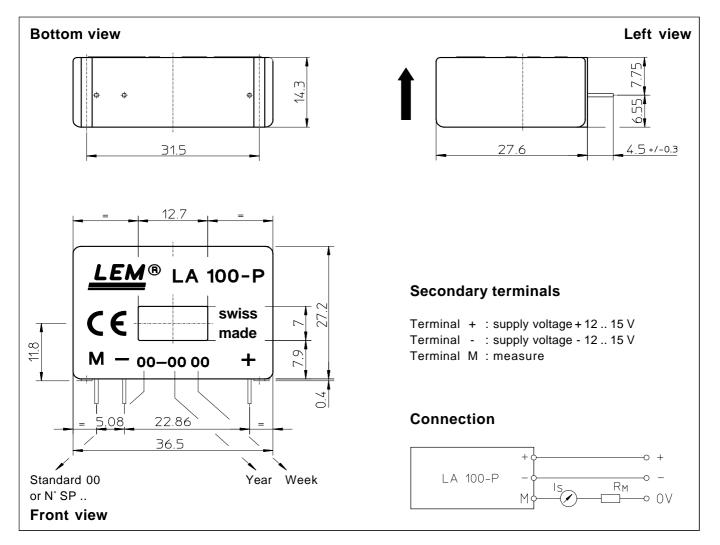
Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Notes : ¹⁾ The result of the coercive field of the magnetic circuit


 $^{\scriptscriptstyle 2)}$ With a di/dt of 100 A/µs

³⁾ A list of corresponding tests is available.

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.

060201/8

Dimensions LA 100-P (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Primary through-hole
- Fastening & connection of secondary

Recommended PCB hole

± 0.2 mm

3 pins

0.9 mm

12.7 x 7 mm

0.63 x 0.56 mm

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.