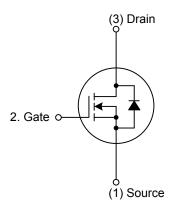


UNISONIC TECHNOLOGIES CO., LTD

UP9972

Preliminary

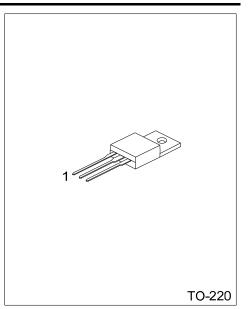
N-CHANNEL ENHANCEMENT MODE


DESCRIPTION

The UTC **UP9972** is an N-ch enhancement mode Power MOS Field Effect Transistor using advanced technology to provide fast speed switching, low on-resistance and perfect cost-effectiveness.

The UTC **UP9972** is ideal for commercial-industrial surface mount applications applied to DC/DC converters or other low voltage applications.

FEATURES


- * Single drive required
- * Fast switching capability
- * Ultra low gate charge
- * Halogen Free
- SYMBOL

ORDERING INFORMATION

Ordering Number		Dockogo	Pin Assignment			Deaking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UP9972L-TA3-T	UP9972G-TA3-T	TO-220	G	D	S	Tube	

UP9972 <u>L-TA3-T</u> (1)Packing Type (2)Package Type (3) Lead Plating	(1) T: Tube (2) TA3: TO-220 (3) G: Halogen Free, L: Lead Free
---	---

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT	
Drain-Source Voltage	V _{DS}	60	V	
Gate-Source Voltage	V _{GS}	±25	V	
Continuous Drain Current (V _{GS} =10V, T _C =25°C)	ID	60	А	
Pulsed Drain Current (Note 2)	I _{DM}	230	А	
Avalanche Current (Note 3)	I _{AR}	30	А	
Single Pulse Avalanche Energy (Note 3)	E _{AS}	45	mJ	
Power Dissipation (T _C =25°C)	PD	89	W	
Junction Temperature	TJ	+150	°C	
Storage Temperature	T _{STG}	-55 ~ +150	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. Pulse width limited by T_{J(MAX)}

3. L = 100 μ H, V_{DD} =30V, I_{AS}=30A, R_G =25 Ω , Starting T_J =25°C

THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to ambient	θ_{JA}	62	°C/W
Junction to case	θ _{JC}	1.4	°C/W

■ ELECTRICAL CHARACTERISTICS (TJ=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	
			IVIIIN		WAX	
	D\/	V -0V L -250WA	60			V
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =250µA	60			V
Breakdown Voltage Temperature Coefficient	$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Reference to 25°C, I_D =1mA		0.06		V/°C
Drain-Source Leakage Current	I _{DSS}	V _{DS} =60V, V _{GS} =0V			10	μA
Gate-Source Leakage Current	I _{GSS}	$V_{GS}=\pm 25V, V_{DS}=0V$			±100	nA
ON CHARACTERISTICS						
Gate Threshold Voltage	V _{GS(TH)}	V _{DS} =V _{GS} , I _D =250µA	1		3	V
Drain to Source On state Desistance (Nate)	R _{DS(ON)}	V _{GS} =10V, I _D =35A			18	mΩ
Drain to Source On-state Resistance (Note)		V _{GS} =4.5V, I _D =25A			22	mΩ
DYNAMIC PARAMETERS						
Input Capacitance	CISS			3170	5070	рF
Output Capacitance	C _{OSS}	V _{GS} =0V,V _{DS} =25V, f=1.0MHz		280		рF
Reverse Transfer Capacitance	C _{RSS}			230		рF
Gate Resistance	R _G	f=1.0MHz		1.7		Ω
SWITCHING PARAMETERS						
Turn-ON Delay Time (Note)	t _{D(ON)}			11		ns
Turn-ON Rise Time	t _R	V _{DS} =30V, V _{GS} =10V , I _D =35A		58		ns
Turn-OFF Delay Time	t _{D(OFF)}	R _G =3.3Ω, R _D =0.86Ω		45		ns
Turn-OFF Fall-Time	t⊧			80		ns
Total Gate Charge (Note)	Q_{G}			32	51	nC
Gate Source Charge	Q _{GS}	I _D =35A, V _{DS} =48V, V _{GS} =4.5V		8		nC
Gate Drain Charge	Q _{GD}]		20		nC
SOURCE- DRAIN DIODE RATINGS AND CHA	RACTERIS	STICS				
Drain-Source Diode Forward Voltage (Note)	V _{SD}	I _S =35A, V _{GS} =0V			1.2	V
Reverse Recovery Time (Note)	t _{RR}	I _S =35A, V _{GS} =0V		50		ns
Reverse Recovery Charge	Q_{RR}	dl/dt=100A/µs		48		nC
Noto: Dulas test						

Note: Pulse test

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

