2-Mbit (128 K $\times 16$) Static RAM

Features

- Temperature ranges
a Industrial: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
a Automotive-A: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
a Automotive-E: $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
■ Pin and function compatible with CY7C1011BV33
- High speed
$\square t_{\mathrm{AA}}=10 \mathrm{~ns}$ (Industrial and Automotive-A)
$\square \mathrm{t}_{\mathrm{AA}}=12 \mathrm{~ns}$ (Automotive-E)
- Low active power

口 360 mW (max) (Industrial and Automotive-A)
■ 2.0 V data retention

- Automatic power down when deselected

■ Independent control of upper and lower bits
■ Easy memory expansion with Chip Enable ($\overline{\mathrm{CE})}$ and Output Enable (OE) features

■ Available in Pb -free 44-pin thin small outline package (TSOP) II, 44-pin thin quad flat package (TQFP), and non Pb-free 48-ball very fine-pitch ball grid array (VFBGA) packages

Functional Description

The CY7C1011CV33 is a high performance complementary metal oxide semiconductor (CMOS) static RAM organized as 131,072 words by 16 bits. This device has an automatic power down feature that significantly reduces power consumption when deselected.
To write to the device, take $\overline{\mathrm{CE}}$ and Write Enable ($\overline{\mathrm{WE}}$) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$), is written into the location specified on the address pins (A_{0} through A_{16}). If Byte High Enable ($\overline{\mathrm{BHE}}$) is LOW, then data from I/O pins $\left(I / O_{8}\right.$ through $\left.I / O_{15}\right)$ is written into the location specified on the address pins (A_{0} through A_{16}).
To read from the device, take $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ LOW while forcing the Write Enable ($\overline{\mathrm{WE}}$) HIGH. If BLE is LOW, then data from the memory location specified by the address pins appear on $/ / \mathrm{O}_{0}$ to $\mathrm{I} / \mathrm{O}_{7}$. If Byte High Enable ($\left.\overline{\mathrm{BHE}}\right)$ is LOW, then data from memory appears on $\mathrm{I} / \mathrm{O}_{8}$ to $\mathrm{I} / \mathrm{O}_{15}$. For more information, see the Truth Table on page 10 for a complete description of Read and Write modes.
The input and output pins $\left(1 / O_{0}\right.$ through $\left.I / O_{15}\right)$ are placed in a high impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), the BHE and BLE are disabled ($\overline{\mathrm{BHE}}, \overline{\mathrm{BLE}} \mathrm{HIGH}$), or during a write operation ($\overline{\mathrm{CE}} \mathrm{LOW}$ and WE LOW).

Logic Block Diagram

Contents

Pin Configuration 3
Selection Guide 4
Maximum Ratings 5
Operating Range 5
Electrical Characteristics 5
Capacitance 6
Thermal Resistance 6
AC Test Loads and Waveforms 6
Switching Characteristics 7
Switching Waveforms 8
Truth Table 10
Ordering Information 11
Ordering Code Definitions 11
Package Diagrams 12
Acronyms 15
Document Conventions 15
Units of Measure 15
Document History Page 16
Sales, Solutions, and Legal Information 17
Worldwide Sales and Design Support 17
Products 17
PSoC Solutions 17

Pin Configuration

Figure 1. 44-pin TSOP II ${ }^{[1]}$

$\mathrm{A}_{4} \square \square_{1}$	44	$\square A_{5}$
$\mathrm{A}_{3} \square 2$	43	$\square A_{6}$
$\mathrm{A}_{2}-3$	42	$\square \mathrm{A}_{7}$
$\mathrm{A}_{1} \sqsubset 4$	41	$\square \overline{\mathrm{OE}}$
$\mathrm{A}_{0} \sqsubset 5$	40	$\square \overline{\mathrm{BHE}}$
$\overline{C E} \square 6$	39	$\square \overline{\text { BLE }}$
$1 / \mathrm{O}_{0} \square 7$	38	$\square \mathrm{I} / \mathrm{O}_{15}$
$1 / \mathrm{O}_{1} \square 8$	37	$\square \mathrm{I} / \mathrm{O}_{14}$
$1 / \mathrm{O}_{2} \square 9$	36	$\square \mathrm{I} / \mathrm{O}_{13}$
$1 / \mathrm{O}_{3} \square 10$	35	$\square \mathrm{I} / \mathrm{O}_{12}$
$V_{\text {cc }} \square 11$	34	$\square \mathrm{V}_{\mathrm{Ss}}$
$\mathrm{V}_{\text {Ss }} \square 12$	33	$\square \mathrm{V}_{\mathrm{Cc}}$
$1 / \mathrm{O}_{4} \square 13$	32	$\square \mathrm{I} \mathrm{O}_{11}$
$1 / \mathrm{O}_{5} \square 14$	31	$\square 1 / O_{10}$
$1 / \mathrm{O}_{6} \square 15$	30	$\square \mathrm{I} / \mathrm{O}_{9}$
$\underline{1 / O_{7} \square 16}$	29	$\mathrm{I} / \mathrm{O}_{8}$
WE -17	28	\square NC
$\mathrm{A}_{16} \square 18$	27	$\square \mathrm{A}_{8}$
$\mathrm{A}_{15}^{\square} \square 19$	26	$\square A_{9}$
$\mathrm{A}_{14}^{\square} \mathrm{C} 20$	25	A_{10}
$\mathrm{A}_{13} \square 21$	24	$\square \mathrm{A}_{11}$
$\mathrm{A}_{12}^{\square} \square 22$	23	$\square \mathrm{NC}$

Figure 2. 48-ball VFBGA Pinout ${ }^{[1]}$

Figure 3. 44-pin TQFP

[^0]
Selection Guide

Description		$\mathbf{- 1 0}$	$\mathbf{- 1 2}$	Unit
Maximum access time	Industrial	10	12	ns
Maximum operating current	Automotive-A	100	95	mA
	Automotive-E	-	100	-

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested.
Storage temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient temperature with power applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply voltage on V_{CC} relative to $\mathrm{GND}^{[2]} \ldots . .-0.5 \mathrm{~V}$ to +4.6 V
DC voltage applied to outputs in High Z state ${ }^{[2]}$ \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC input voltage ${ }^{[2]}$ \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$

Current into outputs (LOW)
20 mA
Static discharge voltage \qquad
(MIL-STD-883, method 3015)
Latch up current ... > 200 mA
Operating Range

Range Ambient Temperature $\left(\mathbf{T}_{\mathbf{A}}\right)$	$\mathbf{V}_{\mathbf{C C}}$	
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$3.3 \mathrm{~V} \pm 10 \%$
Automotive-A	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Automotive -E	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	

Electrical Characteristics

Over the Operating Range

Parameter	Description	Test Conditions			-10		-12	Unit
				Min	Max	Min	Max	
V_{OH}	Output HIGH voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4	-	2.4	-	V
V_{OL}	Output LOW voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		-	0.4	-	0.4	V
V_{IH}	Input HIGH voltage			2.0	$\mathrm{V}_{\mathrm{CC}}+0.3$	2.0	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
$\mathrm{V}_{\text {IL }}$	Input LOW voltage ${ }^{[2]}$			-0.3	0.8	-0.3	0.8	V
IIX	Input leakage current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	Industrial	-1	+1	-1	+1	$\mu \mathrm{A}$
			Automotive-A	-1	+1	-	-	
			Automotive-E	-	-	-20	+20	
IOZ	Output leakage current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$, Output disabled	Industrial	-1	+1	-1	+1	$\mu \mathrm{A}$
			Automotive-A	-1	+1	-	-	
			Automotive-E	-	-	-20	+20	
${ }^{\text {ICC }}$	V_{CC} operating supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$	Industrial	-	100	-	95	mA
			Automotive-A	-	100	-	-	
			Automotive-E	-	-	-	120	
$\mathrm{I}_{\text {SB1 }}$	Automatic CE power down current -TTL Inputs	$\begin{aligned} & \operatorname{Max}_{V_{C C}}, \overline{C E} \geq V_{I H}, \\ & V_{I N} \geq V_{I H} \text { or } V_{I N} \leq V_{I L}, f=f_{M A X} \end{aligned}$	Industrial	-	40	-	40	mA
			Automotive-A	-	40	-	-	
			Automotive-E	-	-	-	45	
$\mathrm{I}_{\text {SB2 }}$	Automatic CE power down current - CMOS inputs	$\begin{aligned} & \operatorname{Max}^{V_{C C}}, \overline{C E} \geq V_{C C}-0.3 \mathrm{~V}, \\ & V_{I N} \geq V_{C C}-0.3 V \text {, or } \\ & V_{I N} \leq 0.3 \mathrm{~V}, \mathrm{f}=0 \end{aligned}$	Industrial	-	10	-	10	mA
			Automotive-A	-	10	-	-	
			Automotive-E	-	-	-	15	

[^1]
Capacitance

| Parameter ${ }^{[3]}$ | Description | Test Conditions | Max | Unit |
| :--- | :--- | :--- | :---: | :---: | :---: |
| $\mathrm{C}_{\mathbb{I}}$ | Input capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ | 8 | pF |
| $\mathrm{C}_{\text {OUT }}$ | Output capacitance | | 8 | pF |

Thermal Resistance

Parameter ${ }^{[3]}$	Description	Test Conditions	44-pin TSOP II	44-pin TQFP	48-ball VFBGA	Unit
Θ_{JA}	Thermal resistance (Junction to ambient)	Still air, soldered on a 3 $\times 4.5$ inch, four-layer printed circuit board	44.56	42.66	46.98	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		10.75	14.64	9.63	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
$\Theta_{\text {JC }}$	Thermal resistance (Junction to case)					

AC Test Loads and Waveforms

Figure 4. AC Test Loads and Waveforms ${ }^{[4]}$

(b)

High-Z characteristics:

(d)

Notes

3. Tested initially and after any design or process changes that may affect these parameters.
4. AC characteristics (except High Z) for 10 -ns parts are tested using the load conditions shown in Figure 4 (a). All other speeds are tested using the Thevenin load shown in Figure 4 (b). High Z characteristics are tested for all speeds using the test load shown in Figure 4 (d).

Switching Characteristics

Over the Operating Range

Parameter ${ }^{[5]}$	Description		-10		-12		Unit
			Min	Max	Min	Max	
Read Cycle							
$\mathrm{t}_{\text {power }}{ }^{\text {[6] }}$	V_{CC} (typical) to the first access		1	-	1	-	$\mu \mathrm{s}$
t_{RC}	Read cycle time		10	-	12	-	ns
t_{AA}	Address to data valid		-	10	-	12	ns
$\mathrm{t}^{\text {OHA }}$	Data hold from address change		3	-	3	-	ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to data valid		-	10	-	12	ns
$t_{\text {doe }}$	$\overline{\mathrm{OE}}$ LOW to data valid	Industrial/Automotive-A	-	5	-	6	ns
		Automotive-E	-	-	-	8	
tizoe	$\overline{\mathrm{OE}}$ LOW to Low $\mathrm{Z}^{[7]}$		0	-	0	-	ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[7,8]}$		-	5	-	6	ns
tlzCE	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[7]}$		3	-	3	-	ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[7,8]}$		-	5	-	6	ns
t_{PU}	$\overline{\text { CE }}$ LOW to power up		0	-	0	-	ns
t_{PD}	$\overline{\overline{C E}}$ HIGH to power down		-	10	-	12	ns
$\mathrm{t}_{\text {DBE }}$	Byte enable to data valid	Industrial/Automotive-A	-	5	-	6	ns
		Automotive-E	-	-	-	8	
t LZBE	Byte enable to Low Z		0	-	0	-	ns
$\mathrm{t}_{\text {HZBE }}$	Byte disable to High Z		-	5	-	6	ns
Write Cycle ${ }^{[9,10]}$							
$\mathrm{t}_{\text {Wc }}$	Write cycle time		10	-	12	-	ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE }}$ LOW to write end		7	-	8	-	ns
$\mathrm{t}_{\text {AW }}$	Address setup to write end		7	-	8	-	ns
t_{HA}	Address hold from write end		0	-	0	-	ns
$\mathrm{t}_{\text {SA }}$	Address setup to write start		0	-	0	-	ns
$t_{\text {PWE }}$	$\overline{\text { WE }}$ pulse width		7	-	8	-	ns
$\mathrm{t}_{\text {SD }}$	Data setup to write end		5	-	6	-	ns
t_{HD}	Data hold from write end		0	-	0	-	ns
t LZWE	$\overline{\text { WE }}$ HIGH to Low ${ }^{[7]}$		3	-	3	-	ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $Z^{[7,8]}$		-	5	-	6	ns
t_{BW}	Byte enable to end of write		7	-	8	-	ns

[^2]
Switching Waveforms

Figure 5. Read Cycle No. 1 (Address Transition Controlled) ${ }^{[11,12]}$

Figure 6. Read Cycle No. 2 (OE Controlled) ${ }^{[12,13]}$

[^3]Switching Waveforms (continued)
Figure 7. Write Cycle No. 1 ($\overline{\mathrm{CE}}$ Controlled) ${ }^{[14,15]}$

Figure 8. Write Cycle No. 2 ($\overline{\mathrm{BLE}}$ or $\overline{\mathrm{BHE}}$ Controlled)

Notes

14. Data I / O is high impedance if $\overline{O E}, \overline{B H E}$, and/or $\overline{B L E}=V_{I H}$.
15. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\text { WE }}$ going HIGH, the output remains in a high impedance state

CY7C1011CV33

Switching Waveforms (continued)
Figure 9. Write Cycle No. 3 ($\overline{\mathrm{WE}}$ Controlled, LOW)

Truth Table

$\overline{\mathrm{CE}}$	$\overline{\mathrm{OE}}$	$\overline{\text { WE }}$	$\overline{\text { BLE }}$	$\overline{\mathrm{BHE}}$	$\mathrm{I} / \mathrm{O}_{0}-1 / \mathrm{O}_{7}$	$1 / \mathrm{O}_{8}-1 / \mathrm{O}_{15}$	Mode	Power
H	X	X	X	X	High Z	High Z	Power down	Standby ($\mathrm{I}_{\text {SB }}$)
L	L	H	L	L	Data Out	Data Out	Read - all bits	Active (I_{CC})
L	L	H	L	H	Data Out	High Z	Read - lower bits only	Active (I_{CC})
L	L	H	H	L	High Z	Data Out	Read - upper bits only	Active (I_{CC})
L	X	L	L	L	Data In	Data In	Write - all bits	Active (I_{CC})
L	X	L	L	H	Data In	High Z	Write - lower bits only	Active (I_{CC})
L	X	L	H	L	High Z	Data In	Write - upper bits only	Active ($\mathrm{ICC}^{\text {) }}$
L	H	H	X	X	High Z	High Z	Selected, outputs disabled	Active ($\mathrm{ICC}^{\text {) }}$

Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
10	CY7C1011CV33-10ZSXA	$51-85087$	$44-$ pin TSOP II (Pb-free)	Automotive-A
12	CY7C1011CV33-12AXI	$51-85064$	$44-$ pin TQFP (Pb-free)	Industrial
	CY7C1011CV33-12ZSXE	$51-85087$	$44-$-pin TSOP II (Pb-free)	Automotive-E
	CY7C1011CV33-12BVXE	$51-85150$	$48-$ ball $(6 \times 8 \times 1 \mathrm{~mm})$ VFBGA	

Ordering Code Definitions

CY
7

Package Diagrams

Figure 10. 44-pin TSOP Z44-II, 51-85087

Package Diagrams (continued)

Figure 11. 44-pin TQFP ($10 \times 10 \times 1.4 \mathrm{~mm}$) A44S, $51-85064$

Package Diagrams (continued)
Figure 12. 48-ball VFBGA ($6 \times 8 \times 1 \mathrm{~mm}$) BV48/BZ48, 51-85150

51-85150 *F

Acronyms

Acronym	Description
$\overline{\mathrm{BHE}}$	byte high enable
$\overline{\overline{\mathrm{BLE}}}$	byte low enable
CMOS	complementary metal oxide semiconductor
$\overline{\overline{\mathrm{CE}}}$	chip enable
I/O	input/output
$\overline{\mathrm{OE}}$	output enable
SRAM	static random access memory
TQFP	thin quad flat pack
TSOP	thin small outline package
TTL	transistor-transistor logic
VFBGA	very fine-pitch ball gird array
$\overline{\mathrm{WE}}$	write enable

Document Conventions

Units of Measure

Symbol	Unit of Measure
${ }^{\circ} \mathrm{C}$	degree Celsius
MHz	Mega Hertz
$\mu \mathrm{A}$	micro Amperes
$\mu \mathrm{s}$	micro seconds
mA	milli Amperes
mm	milli meter
ms	milli seconds
mV	milli Volts
mW	milli Watts
ns	nano seconds
$\%$	percent
pF	pico Farad
V	Volts
W	Watts

Document History Page

Document Title: CY7C1011CV33, 2-Mbit (128 K $\times 16$) Static RAM
Document Number: 38-05232

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
	117132	07/31/02	HGK	New Data Sheet
*A	118057	08/19/02	HGK	Pin configuration for 48-ball FBGA correction
*B	119702	10/11/02	DFP	Updated FBGA to VFBGA; updated package code on page 8 to BV48A. Updated address pinouts on page 1 to AO to A 16 . Updated CMOS standby current on page 1 from 8 to 10 mA
${ }^{*} \mathrm{C}$	386106	See ECN	PCI	Added lead-free parts in Ordering Information Table
*D	498501	See ECN	NXR	Corrected typo in the Logic Block Diagram on page\# 1 Included the Maximum Ratings for Static Discharge Voltage and Latch up Current on page\# 3 Changed the description of $I_{\mid X}$ from Input Load Current to Input Leakage Current in DC Electrical Characteristics table Updated the Ordering Information Table
*E	522620	See ECN	VKN	Added Thermal Resistance Table
*F	1891366	See ECN	VKN/AESA	Added -10ZSXA part Updated Ordering Information table
*G	2428606	See ECN	VKN/PYRS	Corrected typo in the 44-Pin TSOP and 48-Ball FBGA pinout Removed Commercial parts Removed 15 ns speed bin Removed inactive parts from the Ordering Information table
*H	2664421	02/25/09	VKN/AESA	Added Automotive-E specs for 12 ns speed Updated Ordering Information table
*	2898399	03/24/2010	KAO/AJU	Updated Package Diagrams
*J	2950666	06/11/2010	VKN	Included "CY7C1011CV33-12BVXE" in Ordering Information Added Contents and Acronyms Updated Sales, Solutions, and Legal Information Added Ordering Code Definitions.
*K	3089939	11/13/2010	PRAS	Removed inactive part from Ordering Information.
*L	3276463	06/07/2011	KAO	Updated Functional Description (Removed "For best practice recommendations, refer to the Cypress application note AN1064, SRAM System Guidelines."). Added Units of Measure. Updated Package Diagrams. Updated in new template.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive

Clocks \& Buffers
Interface
Lighting \& Power Control

Memory
Optical \& Image Sensing
PSoC
Touch Sensing
USB Controllers
Wireless/RF
cypress.com/go/automotive
cypress.com/go/clocks
cypress.com/go/interface
cypress.com/go/powerpsoc
cypress.com/go/plc
cypress.com/go/memory
cypress.com/go/image
cypress.com/go/psoc
cypress.com/go/touch
cypress.com/go/USB
cypress.com/go/wireless

 application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

 the express written permission of Cypress.

 assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

[^0]: Note

 1. NC pins are not connected on the die.
[^1]: Note
 2. $\mathrm{V}_{\mathrm{IL}}(\min)=-2.0 \mathrm{~V}$ for pulse durations of less than 20 ns .

[^2]: Notes
 5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , and input pulse levels of 0 to 3.0 V .
 6. tPOWER gives the minimum amount of time that the power supply is at typical V_{CC} values until the first memory access is performed.
 7. At any temperature and voltage condition, $t_{\text {HZCE }}$ is less than $t_{\text {LZCE }}, t_{\text {HZOE }}$ is less than $t_{\text {LZOE }}$, and $t_{\text {HZWE }}$ is less than $t_{\text {LZWE }}$ for any device.
 8. $t_{\text {HzOE }}, t_{\text {HZBE }}, t_{\text {HZCE }}$, and $t_{\text {HZWE }}$ are specified with a load capacitance of 5 pF as in part (d) of Figure 4 on page 6 . Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage
 9. The internal write time of the memory is defined by the overlap of $\overline{C E}$ LOW, $\overline{W E}$ LOW, and $\overline{B H E} / \overline{B L E} L O W$. $\overline{C E}, \overline{W E}$, and $\overline{B H E} / B L E$ must be LOW to initiate a write. The transition of these signals terminate the write. The input data setup and hold timing is referenced to the leading edge of the signal that terminates the write.
 10. The minimum write cycle time for Write Cycle No. 3 (WE controlled, OE LOW) is the sum of thzWE and tsD. $^{\text {W }}$

[^3]: Notes
 11. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}, \overline{\mathrm{BHE}}$, and/or $\overline{\mathrm{BLE}}=\mathrm{V}_{\mathrm{IL}}$
 12. WE is HIGH for read cycle.
 13. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.

