

ILH100 Hermetic Phototransistor Optocoupler

FEATURES

- Operating Temperature Range, -55°C to +125°C
- Current Transfer Ratio Guaranteed from -55°C to +100°C Ambient Temperature Range
- High Current Transfer Ratio at Low Input Current
- Isolation Test Voltage, 3000 V_{DC}
- Base Lead Available for Transistor Biasing
- Standard 8 Pin DIP Package

DESCRIPTION

The ILH100 is designed especially for hi-rel applications requiring optical isolation with high current transfer ratio and low saturation V_{CE} . Each optocoupler consists of a light emitting diode and a NPN silicon phototransistor mounted and coupled in an 8 pin hermetically sealed DIP package. The ILH100's low input current makes it well suited for direct CMOS to LSTTL/ TTL interfaces.

Maximum Ratings

Emitter	
Reverse Voltage	6.0 V
Forward Current	60 mA
Peak Forward Current ⁽¹⁾	1.0 A
Power Dissipation	150 mW
Derate Linearly from 25°C	1.5 mW/°C
Detector	
Collector-Emitter Voltage	70 V
Emitter-Base Voltage	
Collector-Base Voltage	
Continuous Collector Current	
Power Dissipation	300 mW
Derate Linearly from 25°C	
Package	
Input–Output Isolation Test Voltage ⁽²⁾	3000 VDC
Storage Temperature Range	65°C to +150°C
Operating Temperature Range	55°C to +125°C
Junction Temperature	150°C
Soldering Time at 240°C, 1.6 mm from case	10 sec.
Power Dissipation	350 mW
Derate Linearly from 25°C	
2	

Notes:

- 1. Values applies for $P_W \le 1.0 \text{ ms}$, PRR $\le 300 \text{ pps}$.
- 2. Measured between pins 1,2,3 and 4 shorted together and pins 5,6,7 and 8 shorted together. $T_A=25$ °C and duration=1.0 second, RH=45%.

Parameter		Symbol	Min.	Тур.	Max.	Unit	Condition	
Emitter								
Forward Voltage		VF	_	1.45	1.7	V	I _F =60 mA	
Reverse Breakdown Voltage		V _{BR}	6.0	_	_		<i>I</i> _R =10 μA	
Reverse Current		I _R	_	0.01	10	μΑ	V _R =6.0 ∨	
Capacitance		CJ	_	20	_	pF	V _F =0 V, f=1.0 MHz	
Thermal Resistance		R _{TH}	_	220	-	°C/W	Junction to Lead	
Detector								
Collector-Emitter Saturation Vo	oltage	V _{CE(sat)}	_	0.25	0.4	V	I _B =20μA, I _{CE} =1.0 mA	
Base-Emitter Voltage		V _{BE}	_	0.65	_		I _B =20μA	
Collector-Emitter Leakage Cur	rent	I _{CEO}		5.0	50	nA	V _{CE} =10 V	
DC Forward Current Gain		HFE	250	400	750	—	V _{CE} =10 V, I _B =20 μA	
Saturated DC Forward Gain		HFE _(sat)	125	200	325	—	V _{CE} =0.4 V, I _B =20 μA	
Capacitance		C _{CE}		6.8	_	pF	V _{CE} =5.0 V, f=1.0 MHz	
		C _{CB}		8.5	-			
		C _{EB}		11	-			
Thermal Resistance		R _{TH}	_	220	_	°C/W	Junction to Lead	
Coupled Characteristics (-5	5°C to 100°	C)	1		1			
Saturated Current Transfer Ratio		CTR _(sat)	70	210	250	%	I _F =10 mA, V _{CE} =0.4 V	
Current Transfer Ratio, Collector-Emitter		CTE _{ce}	100	300	450	%	I _F =10 mA, V _{CE} =10 V	
Current Transfer Ratio, Collector-Base		CTR _{cb}	0.4	0.7	0.9		I _F =10 mA, V _{CB} =9.3 V	
Isolation and Insulation		I	1				1	
Common Mode Rejection Output High		CMH	1000	2000	_	V/µs	V_{CM} =500 V _{p-p} , V _{CC} =5.0 V, R _L =1.0 KΩ, I _F =0 r	
Common Mode Rejection Output Low		CML	1000	2000	-	V/µs	V_{CM} =500 V_{p-p} , V_{CC} =5.0 V, R_{L} =1.0 K Ω , I_{F} =10 r	
Package Capacitance		C _{IO}	_	1.5		рF	V _{IO} =0 V, 1.0 MHz	
Insulation Resistance		R _{IO}	10 ¹¹	10 ¹⁴	-	W	V _{IO} =500 VDC	
Leakage Current, Input-Output		I _{IO}	_	-	10	μΑ	Relative Humidity ≤50%, V _{IO} 3000 VDC, 5.0 sec.	
Typical Switching Speeds T	=25°C							
Non-Saturated Switching	Symbol	Тур.	1	Max		Uni	it Test Condition	
Delay	t _d	0.8		2.0		μs	—	
Rise	t _r	2.0		5.0			$V_{\rm CC}$ =5.0 V	
Storage	t _S	0.4		1.5			<i>R</i> L=75 Ω	
Fall	tf	2.0		5.0			<i>I</i> _F =10 mA	
Propagation-High to Low	t _{pHL}	1.0		3.0			50% of V _{PP}	

4.0

2.0

3.0

30

5.0

40

Max.

Characteristics T_A =25°C, unless otherwise specified

-

Propagation-Low to High

Saturated Switching⁽¹⁾

Propagation-High to Low

Propagation-Low to High

Delay

Rise

Fall

Storage

~

2.1.1.1

Infineon Technologies, Corp. • Optoelectronics Division • Cupertino, CA (formerly Siemens Microelectronics, Inc.) www.infineon.com/opto • 1-800-777-4363 2

1.5

Тур.

0.7

1.0

13.5

12

1.4

15

 t_{pLH}

t_d

t_r

 $t_{\rm S}$

 $t_{\rm f}$

t_{pHL}

t_{pLH}

Symbol

R_{BE}=open

 $V_{\rm CE}$ =0.4 V

V_{CE}=0.4 V

 $R_{\rm L}$ =1.0 K Ω

*I*_F=10 mA

V_{CC}=5.0 V V_{TH}=1.5 V

R_{BE}=open

Test Condition

т т

Figure 1. Switching time waveform and test schematic non-saturated test condition

1 1

Figure 2. Forward current versus forward voltage and temperature

Figure 3. Peak LED current versus duty factor refresh rate and temperature

Figure 4. Normalized non-saturated current transfer ratio versus temperature and LED current

1

Figure 5. Normalized saturated current transfer ratio versus temperature and LED current

Figure 6. Normalized saturated current transfer ratio versus temperature and LED current

Figure 7. Collector-emitter current versus temperature and LED current

Figure 8. Collector-emitter current versus temperature and LED current

Figure 9. Collector-emitter current versus temperature and LED current

Figure 10. Saturated collector-emitter current versus temperature and LED current

Figure 11. Saturated collector-emitter current versus temperature and LED current

Infineon Technologies, Corp. • Optoelectronics Division • Cupertino, CA (formerly Siemens Microelectronics, Inc.) www.infineon.com/opto • 1-800-777-4363 4

Figure 12. Normalized collector base CRT versus temperature and LED current

1

Figure 13. Normalizied lcb photocurrent versus temperature and LED current

Figure 14. Normalized non-saturated and saturated HFE at $T_A=25^{\circ}$ C versus base current

Figure 15. Normalized non-saturated and saturated HFE at T_A =50°C versus base current

ILH100 April 29, 1999

Figure 16. Normalized non-saturated and saturated HFE at T_A =70°C versus base current

Figure 17. Collector-emitter leakage current versus temperature

Figure 18. Base emitter voltage versus base current

Figure 19. Base emitter capacitance versus base emitter voltage

Figure 20. Propagation delay versus temperature and collector load resistance for $I_{\rm F}$ =5.0 mA

÷

Figure 21. Propagation delay versus temperature and collector load resistance for I_F =10 mA

Figure 22. Propagation delay versus temperature and collector load resistance for I_F =20 mA

Figure 23. Propagation delay versus temperature and collector load resistance for I_F =5.0 mA

Infineon Technologies, Corp. • Optoelectronics Division • Cupertino, CA (formerly Siemens Microelectronics, Inc.) www.infineon.com/opto • 1-800-777-4363 5

ILH100 April 29, 1999

Figure 1. Switching time waveform and test schematic saturated test condition

Figure 2. Propagation delay versus temperature and collector load resistance for $I_{\rm F}$ =10 mA

Figure 3. Propagation delay versus temperature and collector load resistance for $I_{\rm F}$ =20 mA

.

Figure 5. Propagation delay versus collector load and base-emitter resistance for $I_{\rm F}$ =5.0 mA

Figure 6. Propagation delay versus collector load and base-emitter resistance for $I_{\rm F}$ =10 mA

Figure 7. Propagation delay versus collector load and base-emitter resistance for $I_{\rm F}$ =10 mA

Figure 8. Propagation delay versus collector load and

Figure 9. Propagation delay versus collector load and base-emitter resistance for $I_{\rm F}$ =15 mA

Figure 10. Propagation delay versus collector load and base-emitter resistance for I_F =15 mA

÷

Figure 12. Common mode transient rejection

