20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

2N3002 SILICON CONTROLLED SWITCH

mechanical data

The devices are in a hermetically sealed welded case with a glass-to-metal seal between case and leads. Approximate weight is 0.35 grams.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

•		UNII
*Continuous Forward Blocking Yoltage, VFB (See Note 1)	60	V
*Continuous Reverse Blocking Voltage, V _R	60	V
*Peak Forward Blocking Voltage (See Note 1)	60	V
*Peak Reverse Blocking Voltage	60	
Peak Gate Reverse Voltage	8	٧
*Continuous Anode Forward Current at (or below) 55 °C Free-Air Temperature (See Note 2)	350	ma
*Continuous Anode Forward Current at 130°C Free-Air Temperature (See Note 2)	75	ma
*Average AnodeForward Current (180° Conduction Angle) at (or below) 55°C Free-Air Temperature (See Note 2)	250	ma
*Anode Surge Current (See Note 3)	6	a
*Peak Gate Forward Current (Pulse width ≤ 8 msec)	250	ma
*Average Gate Power Dissipation	100	mw
*Operating Free-Air Temperature Range	- 65 to + 150	°C
*Storage Temperature Range	- 65 to +- 200	°(

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
l _F	Anode Forward Blocking Current†	$V_{AK}=$ Rated V_{FB_r} $R_{GK}=1$ k Ω			20	по
		$V_{AK} = Rated V_{FB}$, $R_{GK} = 1 k\Omega$, $T_A = 150 °C$			20	μα
I _R	Anode Reverse Blocking Current†	$V_{KA} = Rated V_R, R_{GK} = \infty$			0.1	μο
		$V_{KA} = Rated V_R$, $R_{GK} = \infty$, $T_A = 150°C$			100	μα
IGR	Gate Reverse Current	$V_{KG} = 5 v$, $R_L = \infty$,	0.1	μα
GT(on)	Gate Trigger Current†	$V_{AA} = 5 v$, $R_L = 12 \Omega$		5.0	20	μο
V _{GT(on)}	Gate Trigger Voltage†	$V_{AA} = 5 \text{ v}, R_L = 12 \Omega, \qquad T_A = -65 \degree C$			0.9	Y
		$V_{AA} = 5 v$, $R_L = 12 \Omega$		0.55	0.7	٧
		$V_{AA} = 5 \text{ v}, R_L = 12 \Omega, \qquad T_A = 150 \text{ °C}$	0.2			٧
l _H	Holding Current	$R_{GK} = 1k \Omega$		1.2	3.0	ma
		$R_{GK} = 1k \Omega_i$ $I_A = -65°$			4.0	ma
٧Ļ	Peak Instantaneous Fwd. Voltage	I _F = 350 ma, (See Note 4)			1.1	٧
dV/ďt	Critical Rate of Anode Voltage Rise	$V_{KG} = 1.0 \text{ y}$		400		v/µsec

MOTES: 1. This value applies when the Gate-Cathode Resistance, R $_{\rm GK} \leq$ 1 k Ω

- 2. For operation above 55°C free-air temperature, refer to Anode Forward Current Derating Curve, Figure 1.
- 3. This rating applies for one half-cycle sine wave, 60 cps, when the device is conducting maximum rated current immediately before and after the surge. Surge may be repeated after the device has returned to original thermal equilibrium conditions.

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages distormers to verify that datasheets are current before placing orders.

^{*}Indicates JEDEC registered data.

*ELECTRICAL CHARACTERISTICS ($1_A - 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Collector Cutoff Current (VCB = 50 Vdc, I _E = 0) (V _{CB} = 50 Vdc, I _E = 0, T _A = 150 ^o C)	I _{CBO}		0.025 15	μ Adc
Collector Cutoff Current (V _{CE} = 30 Vdc, V _{BE} = 0.5 Vdc)	ICEX		.050	Adc بر
Base Cutoff Current (V _{CE} = 30 Vdc, V _{BE} = 0.5 Vdc)	I _{BL}		.050	μ Adc
Collector-Base Breakdown Voltage (I _C = 10 µ Adc, I _E = 0)	вуСВО	60		Vdc
Collector-Emitter Breakdown Voltage (1) (I _C = 10 mAdc, pulsed, I _B = 0)	BVCEO	20		Vdc
Emitter-Base Breakdown Voltage (I _E = 10 µ Adc, I _C = 0)	BVEBO	5.0		Vdc
Collector Saturation Voltage (1) (I _C = 150 mAdc, I _B = 15 mAdc)	V _{CE} (sat)		0.5	Vdc
Base-Emitter Saturation Voltage (1) (I _C = 150 mAdc, I _B = 15 mAdc)	V _{BE} (sat)		1.3	Vdc
DC Forward Current Transfer Ratio $(I_C = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	h _{FE}	100	300	
Common-Base Open Circuit Output Capacitance $(V_{CB} = 10 \text{ V}, I_E = 0, f = 100 \text{ kHz})$	C _{ob}		8.0	рF
Delay Time (VCC = 30 V, I _{CS} = 150 mA, I _{B1} = 15 mA)	t _d		20	ns
Rise Time $(V_{CC} = 30 \text{ V}, I_{CS} = 150 \text{ mA}, I_{B1} = 15 \text{ mA})$	t _r		75	ns
Storage Time $(V_{CC} = 6 \text{ V. } I_{CS} = 150 \text{ mA. } I_{B1} = 15 \text{ mA.}$ $I_{B2} = 15 \text{ mA.}$	tg		300	กร
Fall Time (V _{CC} = 6 V, I _{CS} = 150 mA, I _{B1} = 15 mA, I _{B2} = 15 mA)	t _f		200	ns
Current Gain-Bandwidth Product (I _C = 20 mA, V _{CE} = 20 V, f = 100 MHz)	1 _T	250		MHz

⁽¹⁾ PULSE TEST: Pulse width ≤ 300 µs, duty cycle ≤ 2%

^{*}Indicates JEDEC Registered Data