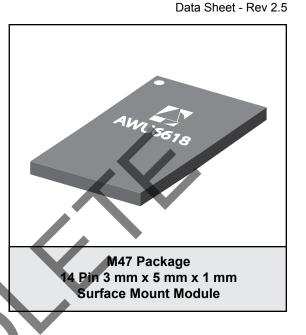
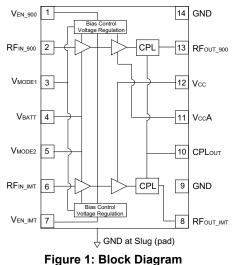
A COMPANIE AND A COM

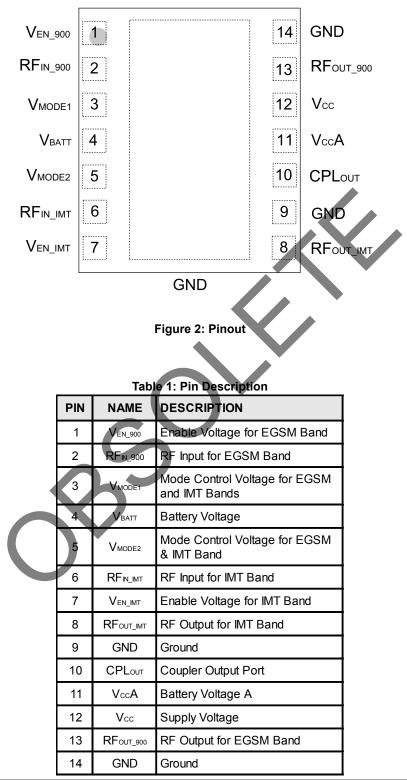
FEATURES


- InGaP HBT Technology
- High Efficiency:
 - 38% @ Pout = +28.5 dBm
 - 23% @ Pout = +17 dBm
 - 9% @ Pout = +8.5 dBm
- Low Quiescent Current: 4 mA
- Internal Voltage Regulation
- **Built-in Directional Coupler**
- Common VMODE Control Line
- Simplified Vcc Bus PCB routing
- **Reduced External Component Count** •
- Low Profile Surface Mount Package: 1 mm
- RoHS Compliant Package, 260 °C MSL-3

APPLICATIONS


IMT & EGSM Dual-band Wireless Handsets and Data Devices for HSDPA/HSPA networks.

PRODUCT DESCRIPTION


AWU6618 addresses the demand for increased integration in dual-band handsets for WCDMA networks. The small footprint 3 mm x 5 mm x 1 mm surface- mount RoHS compliant package contains independent RF PA paths to ensure optimal performance in both frequency bands, while achieving a 25% PCB space savings compared with solutions requiring two single-band PAs. The package pinout was chosen to enable handset manufacturers to easily route bias to both power amplifiers and simplify control with common mode pins. The device is manufactured on an advanced InGaP HBT MMIC technology offering state-of-the-art reliability, temperature stability, and ruggedness. The AWU6618 is part of ANADIGICS' High-Efficiency-at-Low-Power (HELP™) family of WCDMA power amplifiers, which deliver low quiescent currents and significantly greater efficiency without the need of an external DC-DC converter. Through selectable bias modes, the AWU6618 achieves optimal efficiency, specifically at low- and mid-range power levels where the PA typically operates, thereby dramatically increasing handset talk-time. Its built-in voltage regulator eliminates the need for external

switches. This PA has built-in directional couplers for each band, with a common coupler output port CPL OUT. These couplers provide high directivity and 24 dB Coupling. The 3 mm x 5 mm x 1 mm surface mount package incorporates matching networks optimized for output power, efficiency and linearity in a 50 Ω system.

AWU6618

ELECTRICAL CHARACTERISTICS

Tuble 2. Absolute minimum and maximum Ratings									
PARAMETER	MIN	MAX	UNIT						
Supply Voltage (VBATT, Vcc, VccA)	0	+5	V						
Mode Control Voltage (VMODE1, VMODE2)	0	+3.5	V						
Enable Voltage (VEN_CELL, VEN_PCS)	0	+3.5	V						
RF Input Power (Pℕ)	-	+10	dBm						
Storage Temperature (Tstg)	-40	+150	°C						

Table 2: Absolute Minimum and Maximum Ratings

Stresses in excess of the absolute ratings may cause permanent damage. Functional operation is not implied under these conditions. Exposure to absolute ratings for extended periods of time may adversely affect reliability.

PARAMETER	MIN	ТҮР	MAX	UNIT	COMMENTS
Operating Frequency (f)	880 1920	-	915 1980	MHz	EGSM (Band 8) IMT (Band 1)
Supply Voltage (Vcc and VBATT)	+3.2	+3.4	+4.2	V	
Enable Voltage (V _{EN})	+1.35 0	+1.8	+3.1 +0.5	V	PA "on" PA "shut down"
Mode Control Voltage (VMODE1, VMODE2)	+1.35	+1.8 -	+3.1 +0.5	V	Low Bias Mode High Bias Mode
RF Output Power, Band 8, UMTS R99 WCDMA, HPM HSPA (MPR = 0 dB), HPM R99 WCDMA, MPM HSPA (MPR = 0 dB), MPM R99 WCDMA, LPM HSPA (MPR = 0 dB), LPM	$28.0^{(1)} \\ 27.0^{(1)} \\ 16.5^{(1)} \\ 15.5^{(1)} \\ 8.0^{(1)} \\ 7.0^{(1)} \\$	28.5 27.5 17.0 16.0 8.5 7.5		dBm	3GPP TS 34.121-1, REL8 Table C.11.1.3 SUBTEST 1
RF Output Power, Band 1, UMTS R99 WCDMA, HPM HSPA (MPR = 0 dB), HPM R99 WCDMA, MPM HSPA (MPR = 0 dB), MPM R99 WCDMA, LPM HSPA (MPR = 0 dB), LPM	$\begin{array}{c} 27.7^{(1)}\\ 26.7^{(1)}\\ 16.0^{(1)}\\ 15.0^{(1)}\\ 7.5^{(1)}\\ 6.5^{(1)} \end{array}$	28.2 27.2 16.5 15.5 8.0 7.0	- - - -	dBm	3GPP TS 34.121-1, REL8 Table C.11.1.3 SUBTEST 1
Case Temperature (Tc)	-30	-	+90	°C	

Table 3: Operating Ranges

The device may be operated safely over these conditions; however, parametric performance is guaranteed only over the conditions defined in the electrical specifications. *Notes:*

(1) For operation at Vcc = +3.2 V, Pour is derated by 0.5 dB.

AWU6618

Table 4: Electrical Specifications - EGSM Band (Band 8)	
(Tc = +25 °C, VBATT = Vcc = +3.4 V, VEN_CELL = +1.8 V, 50 Ω system, R99 uplink waveform	1)

	MIN	TVD			COMMENTS		
PARAMETER	MIN	TYP	MAX	UNIT	Роит	VMODE1	VMODE2
Gain	25 14.5 9	27.5 17 11	30 19.5 14	dB	+28.5 dBm +17 dBm +8.5 dBm	0 V 1.8 V 1.8 V	0 V 0 V 1.8 V
ACLR1 @ 5 MHz Offset (1)	- - -	-43 -43 -41	-37 -36 -36	dBc	+28.5 dBm +17 dBm +8.5 dBm	0 V 1.8 V 1.8 V	0 V 0 V 1.8 V
ACLR2 @ 10 MHz Offset (1)	- - -	-58 -55 -55	-48 -48 -48	dBc	+28.5 dBm +17 dBm +8.5 dBm	0 V 1.8 V 1.8 V	0 V 0 V 1.8 V
Power-Added Efficiency (1)	33 18 6	38 22 9		%	+28.5 dBm +17 dBm +8.5 dBm	0 V 1.8 V 1.8 V	0 V 0 V 1.8 V
Quiescent Current (Icq)	-	4	6.5	mA	through Vcc VMODE1 = +1.8		=+1.8 V
Mode Control Current	-	0.1	0.2	mA	through VMOE VMODE2 = +1.		DE1 = +1.8 V ,
Battery Current		1.5	2.5	mA	through VBAT VMODE2 = +1.3		= +1.8 V,
Enable Current		0.15	0.25	mA	through V_{EN}	900 pin	
Noise in Receive Band	-	-134	-132	dBm/Hz	925 MHz to	960 MHz	
Harmonics 2fo 3fo, 4fo	2	-42 -50	-30 -38	dBc	Pout < +28.	5 dBm	
Input Impedance	-	-	2:1	VSWR			
Coupling Factor	-	23.4	-	dB			
Spurious Output Level (all spurious outputs)	-	-	-65	dBc	Pout < +28.3 In-band Load Out-of-band Applies over	d VSWR < Load VSW	
Load mismatch stress with no permanent degradation or failure <i>lotes:</i>	8:1	-	-	VSWR	Applies over	r full operati	ng conditions

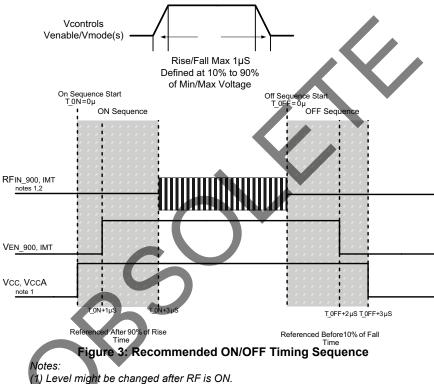
(1) Efficiency and ACLR measured at 897.5 MHz.

Table 5: Electrical Specifications - IMT Band (Band 1)	
(Tc = +25 °C, VBATT = Vcc = +3.4 V, VEN_PCS = +1.8 V, 50 Ω system) (R99 uplink waveform	I)

DADAMETED	MIN					COMMENTS		
PARAMETER	MIN	ТҮР	MAX	UNIT	Ρουτ	VMODE1	VMODE2	
Gain	24 12 8	17 14.5 10	29.5 17 13	dB	+28.2 dBm +16.5 dBm +8 dBm	0 V 1.8 V 1.8 V	0 V 0 V 1.8 V	
ACLR1 @ 5 MHz Offset	- - -	-42 -43 -44	-37 -36 -36	dBc	+28.2 dBm +16.5 dBm +8 dBm	0 V 1.8 V 1.8 V	0 V 0 V 1.8 V	
ACLR2 @ 10 MHz Offset	- -	-55 -56 -55	-48 -48 -48	dBc	+28.2 dBm +16.5 dBm +8 dBm	0 V 1.8 V 1.8 V	0 V 0 V 1.8 V	
Power-Added Efficiency (1)	33 21 6	37 24 9	- - -	%	+28.2 dBm +16.5 dBm +8 dBm	0 V 1.8 V 1.8 V	0 V 0 V 1.8 V	
Quiescent Current (lcq)	-	4	6.5	mA	through Vcc р V _{MODE1} = +1.8		=+1.8 V	
Mode Control Current	-	0.1	0.2	mA	through V _{MODE} V _{MODE2} = +1.8	•	_{be1} = +1.8 V	
Battery Current	-	1.4	2.5	mA	through VBATT VMODE2 = +1.8		= +1.8 V,	
Enable Current	-	0.15	0.25	mA	through $V_{\text{EN}_{M}}$	τ pin		
HBT Leakage Current on Vcc (Shutdown mode)		7	5	μA	V _{BATT} = +4.2 V V _{EN} = 0 V, V _M		.2 V, V _{MODE2} = 0 V	
Total Decoder Current on VBATT (Shutdown Mode)		12	22	μA	VBATT = 4.2 V, VEN = 0 V, VM			
Noise in Receive Band		-136	-134	dBm/Hz	2110 MHz to 2	2170 MHz		
Harmonics 2fo 3fo, 4fo	-	-42 -50	-30 -38	dBc	Pout < +28.2	dBm		
Input Impedance	-	-	2:1	VSWR				
Coupling Factor	-	22.5	-	dB				
Spurious Output Level (all spurious outputs)	-	-	-65	dBc	Pout < +28.2 In-band Load Out-of-band L Applies over a	VSWR < oad VSW	R < 10:1	
Load mismatch stress with no permanent degradation or failure	8:1	-	-	VSWR	Applies over f	full operation	ng conditions	

(1) ACPRs and Efficiency measured at 1950 MHz.

APPLICATION INFORMATION

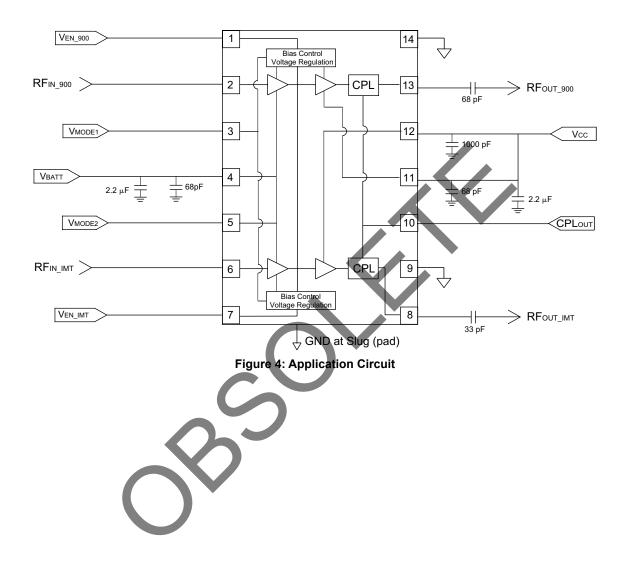

To ensure proper performance, refer to all related Application Notes on the ANADIGICS web site: http://www.anadigics.com

Shutdown Mode

The power amplifier may be placed in a shutdown mode by applying logic low levels (see Operating Ranges table) to the VENABLE and VMODE voltages.

Bias Modes, Medium Bias Mode

The power amplifier may be placed in Low Bias mode or a High Bias mode by applying the appropriate logic level (see Operating Ranges table) to the V_{MODE1} , and V_{MODE2} pins. The Bias Control table lists the recommended modes of operation for various applications.



(1) Level might be changed after RF is ON. (2) RF OFF defined as P⊪ ≤ -30 dBm.

(3) Switching simultaneously between VMODE and VEN is not recommended

Table 6: Bias Control

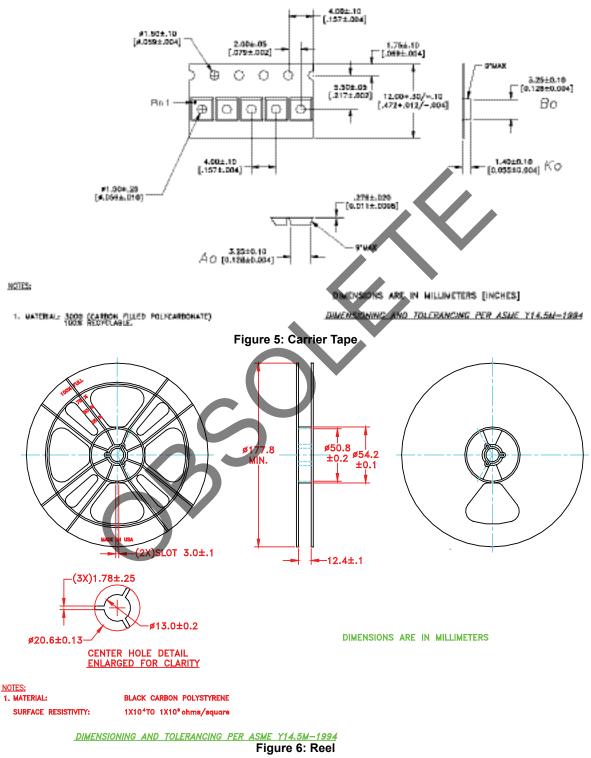
APPLICATION	Pout LEVELS	BIAS MODE	Ven	V MODE1	V MODE2	Vcc	VBATT
WCDMA - low power (Low Bias Mode)	< +8.5 dBm	Low	+1.8 V	+1.8	+1.8 V	3.2 - 4.2 V	> 3.2 V
WCDMA - med power (Medium Bias Mode)	> 8 dBm < +17 dBm	Low	+1.8 V	+1.8 V	0 V	3.2 - 4.2 V	> 3.2 V
WCDMA - high power (High Bias Mode)	> +16 dBm	High	+1.8 V	0 V	0 V	3.2 - 4.2 V	> 3.2 V
Shutdown	-	Shutdown	0 V	0 V	0 V	3.2 - 4.2 V	> 3.2 V

AWU6618

PACKAGE OUTLINE



Figure 8: Branding Specification


YYWW

Date Code

YY= Year WW= Work Week

AWU6618

COMPONENT PACKAGING

ORDERING INFORMATION

ORDER NUMBER	TEMPERATURE RANGE	PACKAGE DESCRIPTION	COMPONENT PACKAGING
AWU6618RM47Q7	-30 °C to +90 °C	RoHS Compliant 14 Pin 3 mm x 5 mm x 1 mm Surface Mount Module	Tape and Reel, 2500 pieces per Reel
AWU6618RM47P9	-30 °C to +90 °C	RoHS Compliant 14 Pin 3 mm x 5 mm x 1 mm Surface Mount Module	Partial Tape and Reel

141 Mount Bethel Road Warren, New Jersey 07059, U.S.A Tel: +1 (908) 668-5000 Fax: +1 (908) 668-5132

URL: http://www.anadigics.com

IMPORTANT NOTICE

ANADIGICS, Inc. reserves the right to make changes to its products or to discontinue any product at any time without notice. The product specifications contained in Advanced Product Information sheets and Preliminary Data Sheets are subject to change prior to a product's formal introduction. Information in Data Sheets have been carefully checked and are assumed to be reliable; however, ANADIGICS assumes no responsibilities for inaccuracies. ANADIGICS strongly urges customers to verify that the information they are using is current before placing orders.

WARNING

ANADIGICS products are not intended for use in life support appliances, devices or systems. Use of an ANADIGICS product in any such application without written consent is prohibited.

