

## 2N3501

MECHANICAL DATA Dimensions in mm (inches)



# NPN SILICON TRANSISTOR

## **FEATURES**

- NPN High Voltage Planar Transistor
- Hermetic TO39 Package
- Full Screening Options Available

**TO39 PACKAGE** 

**Underside View** 

Pin 1 = Emitter Pin 2 = Base Pin 3 = Collector

### **ABSOLUTE MAXIMUM RATINGS** (T<sub>case</sub> = 25°C unless otherwise stated)

| V <sub>CBO</sub> | Collector – Base Voltage                         | 150V         |
|------------------|--------------------------------------------------|--------------|
| V <sub>CEO</sub> | Collector – Emitter Voltage (I <sub>B</sub> = 0) | 150V         |
| V <sub>EBO</sub> | Emitter – Base Voltage (I <sub>B</sub> = 0)      | 6V           |
| I <sub>C</sub>   | Collector Current                                | 300mA        |
| PD               | Total Device Dissipation $T_A = 25 \text{ °C}$   | 1W           |
| PD               | Derate above 25°C                                | 5.71mW / °C  |
| T <sub>stg</sub> | Storage Temperature                              | –65 to 200°C |
| R <sub>ja</sub>  | Thermal Resistance Junction to Ambient           | 175°C/W      |
|                  |                                                  |              |

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.



2N3501

#### ELECTRICAL CHARACTERISTICS (T<sub>A</sub> = 25°C unless otherwise stated)

|                      | Farameter                                         | Test Conditions        |                           | Min. | Тур. | Max.  | Unit     |  |  |  |  |
|----------------------|---------------------------------------------------|------------------------|---------------------------|------|------|-------|----------|--|--|--|--|
|                      | OFF CHARACTERISTICS                               |                        |                           |      |      |       |          |  |  |  |  |
| V <sub>(BR)CEO</sub> | Collector-Emitter Breakdown Voltage <sup>1</sup>  | I <sub>C</sub> = 10mA  | I <sub>B</sub> = 0        | 150  |      |       | V        |  |  |  |  |
| V <sub>(BR)CBO</sub> | Collector-Base Breakdown Voltage                  | I <sub>C</sub> = 10μA  | I <sub>E</sub> = 0        | 150  |      |       |          |  |  |  |  |
| V <sub>(BR)EBO</sub> | Emitter-Base Breakdown Voltage                    | I <sub>E</sub> = 10μΑ  | $I_{\rm C} = 0$           | 6    |      |       |          |  |  |  |  |
| · ·                  | Collector Cutoff Current                          | V <sub>CB</sub> = 75V  | $I_E = 0$                 |      |      | 0.05  | μΑ       |  |  |  |  |
| I <sub>CBO</sub>     |                                                   | V <sub>CB</sub> = 75V  | $I_E = 0$                 |      |      | 50    |          |  |  |  |  |
|                      |                                                   |                        | $T_A = 150^{\circ}C$      |      |      | 50    |          |  |  |  |  |
| I <sub>EBO</sub>     | Emitter Cutoff Current                            | $V_{EB(off)} = 4V$     | $I_{\rm C} = 0$           |      |      | 25    | nA       |  |  |  |  |
|                      | ON CHARACTERISTICS                                |                        |                           |      |      |       |          |  |  |  |  |
|                      |                                                   | I <sub>C</sub> = 0.1mA | $V_{CE} = 10V$            | 35   |      |       |          |  |  |  |  |
|                      |                                                   | I <sub>C</sub> = 1mA   | $V_{CE} = 10V$            | 50   |      |       |          |  |  |  |  |
| h <sub>FE</sub>      | DC Current Gain                                   | I <sub>C</sub> = 10mA  | $V_{CE} = 10V^{1}$        | 75   |      |       |          |  |  |  |  |
|                      |                                                   | I <sub>C</sub> = 150mA | $V_{CE} = 10V^{1}$        | 100  |      | 300   |          |  |  |  |  |
|                      |                                                   | I <sub>C</sub> = 300mA | $V_{CE} = 10V^{1}$        | 20   |      |       |          |  |  |  |  |
|                      | Collector-Emitter Saturation Voltage <sup>1</sup> | I <sub>C</sub> = 10mA  | I <sub>B</sub> = 1mA      |      |      | 0.2   | V        |  |  |  |  |
| V <sub>CE(SAT)</sub> |                                                   | I <sub>C</sub> = 50mA  | I <sub>B</sub> = 5mA      |      |      | 0.25  |          |  |  |  |  |
| - (- )               |                                                   | I <sub>C</sub> = 150mA | I <sub>B</sub> = 15mA     |      |      | 0.4   |          |  |  |  |  |
|                      | Base-Emitter Saturation Voltage <sup>1</sup>      | I <sub>C</sub> = 10mA  | I <sub>B</sub> = 1mA      |      |      | 0.8   | V        |  |  |  |  |
| V <sub>BE(SAT)</sub> |                                                   | I <sub>C</sub> = 50mA  | I <sub>B</sub> = 5mA      |      |      | 0.9   |          |  |  |  |  |
|                      |                                                   | I <sub>C</sub> = 150mA | I <sub>B</sub> = 15mA     |      |      | 1.2   |          |  |  |  |  |
|                      | SMALL SIGNAL CHARACTERIST                         | ics                    |                           |      |      |       |          |  |  |  |  |
| 4                    | Current-Gain–Bandwidth Product <sup>2</sup>       | $V_{CE} = 20V$ I       | I <sub>C</sub> = 20mA     | 150  |      |       |          |  |  |  |  |
| Γ                    |                                                   |                        | f = 100MHz                | 150  |      |       |          |  |  |  |  |
| 0                    | Output Capacitance                                | V <sub>CB</sub> = 10V  | I <sub>E</sub> = 0        |      |      | 8     |          |  |  |  |  |
| C <sub>obo</sub>     |                                                   |                        | f = 1MHz                  |      |      |       |          |  |  |  |  |
| 0                    | Input Capacitance                                 | $V_{EB} = 0.5V$        | $I_{\rm C} = 0$           |      | 00   | pF    |          |  |  |  |  |
| C <sub>ibo</sub>     |                                                   |                        | f = 1MHz                  |      | 80   | 00    |          |  |  |  |  |
|                      | Input Impedance                                   | V <sub>CE</sub> = 10V  | I <sub>C</sub> = 10mA     | 0.25 | 1.05 |       |          |  |  |  |  |
| n <sub>ie</sub>      |                                                   |                        | f = 1KHz                  |      |      | 1.20  | 52       |  |  |  |  |
|                      | Voltage Feedback Ratio                            | V <sub>CE</sub> = 10V  | I <sub>C</sub> = 10mA     |      | 4    | v10-4 |          |  |  |  |  |
| n <sub>re</sub>      |                                                   |                        | f = 1KHz                  |      |      | 4     |          |  |  |  |  |
|                      | Small-Signal Current Gain                         | V <sub>CE</sub> = 10V  | I <sub>C</sub> = 10mA     |      |      | 97E   | —        |  |  |  |  |
| n <sub>fe</sub>      |                                                   |                        | f = 1KHz                  |      |      | 3/3   |          |  |  |  |  |
| h                    | Output Admittance                                 | V <sub>CE</sub> = 10V  | $I_{\rm C} = 10 {\rm mA}$ |      | 200  |       |          |  |  |  |  |
| h <sub>oe</sub>      |                                                   |                        | f = 1KHz                  |      |      | 200   | <u> </u> |  |  |  |  |

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. E-mail: <u>sales@semelab.co.uk</u>



### ELECTRICAL CHARACTERISTICS Continued (T<sub>A</sub> = 25°C unless otherwise stated)

|                | Parameter                 | Test Conditions                                                                                               | Min. | Тур. | Max. | Unit |
|----------------|---------------------------|---------------------------------------------------------------------------------------------------------------|------|------|------|------|
|                | SWITCHING CHARACTERISTICS |                                                                                                               |      |      |      |      |
| <sup>t</sup> d | Delay Time                | $I_{C} = 150 \text{mA} \qquad I_{B1} = 15 \text{mA}$ $V_{CC} = 100 \text{V} \qquad V_{EB(off)} = -2 \text{V}$ |      | 20   |      | ns   |
| t <sub>r</sub> | Rise Time                 | $I_{C} = 150 \text{mA} \qquad I_{B1} = 15 \text{mA}$ $V_{CC} = 100 \text{V} \qquad V_{EB(off)} = -2 \text{V}$ |      | 35   |      | ns   |
| t <sub>s</sub> | Storage Time              | $I_{C} = 150 \text{mA}$ $V_{CC} = 100 \text{V}$<br>$I_{B1} = I_{B2} = 15 \text{mA}$                           |      | 800  |      | ns   |
| <sup>t</sup> f | Fall Time                 | $I_{C} = 150 \text{mA}$ $V_{CC} = 100 \text{V}$<br>$I_{B1} = I_{B2} = 15 \text{mA}$                           |      | 80   |      | ns   |

1) Pulse test : Pulse Width <  $300\mu$ s ,Duty Cycle < 2%

2)  $f_t$  is defined as the frequency at which  $|h_{fe}|.f_{test}$ 

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.