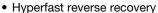


Vishay Semiconductors


Tandem Insulated SOT-227 Power Module Hyperfast Rectifier, 60 A

PRODUCT SUMMARY						
V_{R}	600 V					
I _{F(AV)} per module at T _C = 126 °C	60 A					
t _{rr}	39 ns					

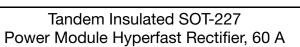
FEATURES

- Two fully independent diodes
- · Ceramic fully insulated package $(V_{ISOL} = 2500 V_{AC})$

- Optimized for power conversion: welding and industrial SMPS applications
- Industry standard outline
- Plug-in compatible with other SOT-227 packages
- · Easy to assemble
- · Direct mounting to heatsink
- UL approved file E78996

· Designed and qualified for industrial level

DESCRIPTION


The UFH60GA60P insulated modules integrate two state of the art Vishay hyperfast recovery rectifiers in the compact, industry standard SOT-227 package. The planar structure of the diodes, and the platinum doping life time control, provide an ultrasoft recovery current shape, together with the best overall performance, ruggedness, and reliability characteristics.

These devices are thus intended for high frequency applications in which the switching energy is designed not to be a predominant portion of the total energy, such as in the output rectification stage of welding machines, SMPS, and dc-to-dc converters. Their extremely optimized stored charge and low recovery current reduce both over dissipation in the switching elements (and snubbers) and EMI/RFI.

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS	
Cathode to anode voltage	V_R		600	V	
Continuous forward current per diode	I _F	T _C = 85 °C	56	Α	
Single pulse forward current per diode	I _{FSM}	T _C = 25 °C	200		
Maximum power dissipation per module	P_{D}	T _C = 85 °C	230	W	
RMS isolation voltage	V _{ISOL}	Any terminal to case, t = 1 min	2500	V	
Operating junction and storage temperatures	T _J , T _{Stg}		- 55 to 175	°C	

UFH60GA60P

Vishay Semiconductors

Document Number: 94663

Revision: 22-Jul-10

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
Cathode to anode breakdown voltage	V_{BR}	I _R = 100 μA		600	-	-	
Famous disables as		$I_F = 30 A$		-	2.08	3.8	
		I _F = 60 A		-	2.36	4.78	V
Forward voltage	V_{FM}	I _F = 30 A	T _J = 125 °C	-	1.79	1.92	
		I _F = 60 A		-	2.1	2.42	
Reverse leakage current I _{RM}		$V_R = V_R$ rated		-	0.03	75	μA
		$T_J = 175 ^{\circ}\text{C}, V_R = V_R \text{rated}$		-	0.1	1.0	mA
Junction capacitance	C _T	V _R = 600 V		-	33	-	pF

DYNAMIC RECOVERY CHARACTERISTICS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
Davis and the state of the stat	+	T _J = 25 °C		-	39	80	ns
Reverse recovery time	t _{rr}	T _J = 125 °C		-	66	110	
Deale was a summer to	T _J = 25 °C	$I_F = 30 \text{ A}$ $dI_F/dt = 200 \text{ A/}\mu\text{s}$	-	3	7	Α	
Peak recovery current	IRRM	T _J = 125 °C	V _R = 200 V	-	7	11] ^
Reverse recovery charge Q _{rr}	0	T _J = 25 °C		-	58	280	nC
	T _J = 125 °C		-	235	605	110	

THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Junction to case, single leg conducting	- R _{thJC}		-	-	0.78	
Junction to case, both leg conducting			-	-	0.39	°C/W
Case to heatsink per module	R _{thCS}	Flat, greased surface	-	0.05	-	
Weight			-	30	-	g
Mounting torque			_	1.3	-	N⋅m

Tandem Insulated SOT-227 Power Module Hyperfast Rectifier, 60 A

Vishay Semiconductors

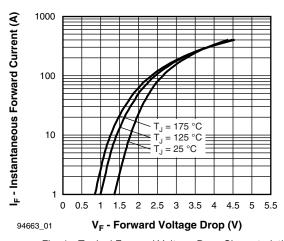


Fig. 1 - Typical Forward Voltage Drop Characteristics (Per Diode)

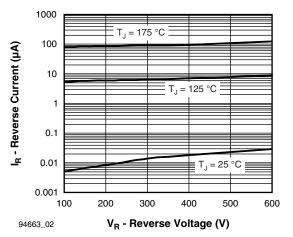


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

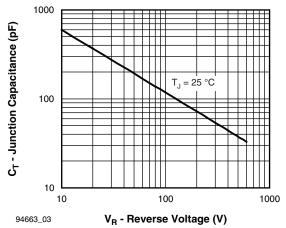


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

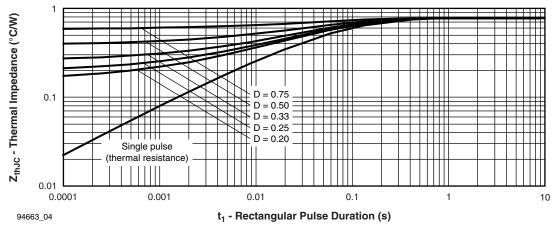


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics (Per Diode)

Vishay Semiconductors

Tandem Insulated SOT-227 Power Module Hyperfast Rectifier, 60 A

Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current (Per Leg)

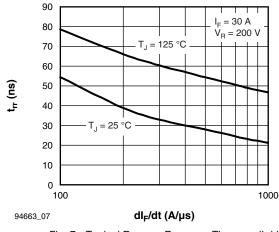


Fig. 7 - Typical Reverse Recovery Time vs. dI_F/dt

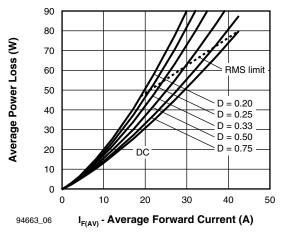


Fig. 6 - Forward Power Loss Characteristics (Per Leg)

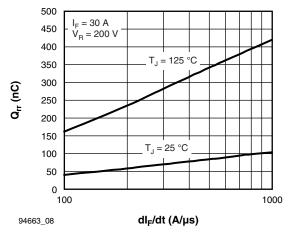


Fig. 8 - Typical Stored Charge vs. dl_F/dt

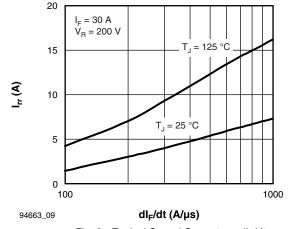


Fig. 9 - Typical Stored Current vs. dl_F/dt

⁽¹⁾ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; Pd = Forward power loss = $I_{F(AV)} \times V_{FM}$ at ($I_{F(AV)}/D$) (see fig. 6); Pd_{REV} = Inverse power loss = V_{R1} x I_{R} (1 - D); I_{R} at V_{R1} = 80 % rated V_{R}

Tandem Insulated SOT-227 Vishay Semiconductors Power Module Hyperfast Rectifier, 60 A

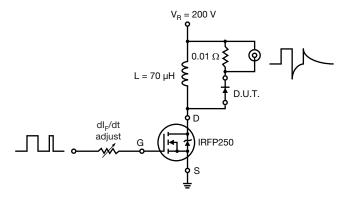
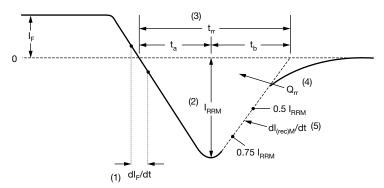



Fig. 10 - Reverse Recovery Parameter Test Circuit

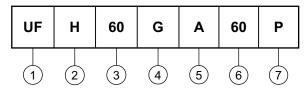
- (1) dl_F/dt rate of change of current through zero crossing
- (2) I_{RRM} peak reverse recovery current
- (3) $\rm t_{rr}$ reverse recovery time measured from zero crossing point of negative going $\rm l_{r}$ to point where a line passing through 0.75 $\rm l_{RRM}$ and 0.50 $\rm l_{RRM}$ extrapolated to zero current.
- (4) \boldsymbol{Q}_{rr} area under curve defined by \boldsymbol{t}_{rr} and \boldsymbol{I}_{RRM}

$$Q_{rr} = \frac{t_{rr} \times I_{RRM}}{2}$$

(5) $dl_{(rec)M}/dt$ - peak rate of change of current during t_b portion of t_{rr}

Fig. 11 - Reverse Recovery Waveform and Definitions

UFH60GA60P


Vishay Semiconductors

Tandem Insulated SOT-227
Power Module Hyperfast Rectifier, 60 A

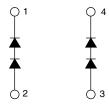
ORDERING INFORMATION TABLE

Device code

1 - Ultrafast rectifier

2 - Hyperfast rectifier

- Current rating (60 = 60 A)


- Circuit configuration (2 separate diodes, tandem configuration)

- Package indicator (SOT-227 standard isolated base)

6 - Voltage rating (60 = 600 V)

7 - P = Lead (Pb)-free

CIRCUIT CONFIGURATION

LINKS TO RELATED DOCUMENTS					
Dimensions <u>www.vishay.com/doc?95036</u>					
Packaging information	www.vishay.com/doc?95037				

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Revision: 11-Mar-11