

J109 **N-CHANNEL JFET**

Linear Systems replaces discontinued Siliconix J109

This n-channel JFET is optimised for low noise high performance switching. The part is particularly suitable for use in low noise audio amplifiers. The TO-92 package is well suited for cost sensitive applications and mass production.

(See Packaging Information).

J109 Benefits:

- Low On Resistance
- Low insertion loss
- Low Noise

J109 Applications:

- **Analog Switches**
- Commutators
- Choppers

FEATURES					
DIRECT REPLACEMENT FOR SILICONIX J109					
LOW ON RESISTANCE	$r_{DS(on)} \le 12\Omega$				
FAST SWITCHING	t _(on) ≤ 4ns				
ABSOLUTE MAXIMUM RATINGS @ 25°C (unless otherwise noted)					
Maximum Temperatures					
Storage Temperature	-55°C to +150°C				
Operating Junction Temperature	-55°C to +150°C				
Maximum Power Dissipation					
Continuous Power Dissipation	350mW				
MAXIMUM CURRENT					
Gate Current (Note 1)	50mA				
MAXIMUM VOLTAGES					
Gate to Drain Voltage	V _{GDS} = -25V				
Gate to Source Voltage	V _{GSS} = -25V				

J109 ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTIC	MIN	TYP.	MAX	UNITS	CONDITIONS	
BV_GSS	Gate to Source Breakdown Voltage	-25				$I_{G} = 1\mu A$, $V_{DS} = 0V$	
V _{GS(off)}	Gate to Source Cutoff Voltage	-2		-6		$V_{DS} = 5V$, $I_{D} = 1\mu A$	
$V_{GS(F)}$	Gate to Source Forward Voltage	-	0.7		V	$I_G = 1mA$, $V_{DS} = 0V$	
I _{DSS}	Drain to Source Saturation Current (Note 2)	40			mA	$V_{DS} = 15V, V_{GS} = 0V$	
I _{GSS}	Gate Reverse Current	-	-0.01	-3		$V_{GS} = -15V, \ V_{DS} = 0V$	
I_{G}	Gate Operating Current	-	-0.01		nA	$V_{DG} = 10V, I_{D} = 10mA$	
I _{D(off)}	Drain Cutoff Current		0.02	3		$V_{DS} = 5V, V_{GS} = -10V$	
r _{DS(on)}	Drain to Source On Resistance	-	1	12	Ω	$V_{GS} = 0V, \ V_{DS} \le 0.1V$	

J109 DYNAMIC ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

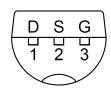
SYMBOL	CHARACTERISTIC	MIN	TYP.	MAX	U <mark>NIT</mark> S	CONDITIONS
g _{fs}	Forward Transconductance		17		mS	$V_{DS} = 5V$, $I_{D} = 10mA$, $f = 1kHz$
g os	Output Conductance		0.6			
r _{DS(on)}	Drain to Source On Resistance			12	Ω	$V_{GS} = 0V$, $I_0 = 0A$, $f = 1kHz$
C _{iss}	Input Capacitance		60	85		$V_{DS} = 0V, V_{GS} = 0V, f = 1MHz$
C_{rss}	Reverse Transfer Capacitance		11	15	pF	$V_{DS} = 0V, V_{GS} = -10V, f = 1MHz$
e_n	Equivalent Noise Voltage		3.5		nV/√Hz	$V_{DS} = 5V$, $I_{D} = 10mA$, $f = 1kHz$

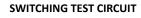
J109 SWITCHING CHARACTERISTICS @ 25°C (unless otherwise noted)

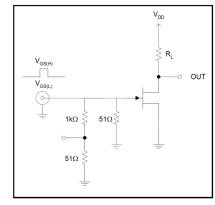
SYMBOL	CHARACTERISTIC		UNITS	CONDITIONS			
t _{d(on)}	Turn On Time	3		V _{DD} = 1.5V			
t _r	Turn On Rise Time	1	ns	nc	$V_{GS}(H) = 0V$		
t _{d(off)}	Turn Off Time	4		See Switching Circuit			
t _f	Turn Off Fall Time	18					

Note 1 - Absolute maximum ratings are limiting values above which J109 serviceability may be impaired. Note 2 - Pulse test: PW≤ 300 μs, Duty Cycle ≤ 3%

J109 SWITCHING CIRCUIT PARAMETERS


$V_{GS(L)}$	-7V
R_L	150Ω
I _{D(on)}	10mA


Available Packages:


J109 in TO-92 J109 in bare die.

Please contact Micross for full package and die dimensions

TO-92 (Bottom View)

Micross Components Europe

Tel: +44 1603 788967

Email: chipcomponents@micross.com Web: http://www.micross.com/distribution