

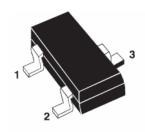
General Description

Low capacitance bi-directional double ESD protection diode in the small SOT-23 plastic package designed to protect 2 data lines from the damage caused by ESD and other transients

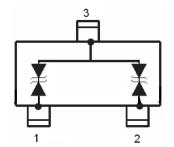
Applications

- Cellular handsets and accessories
- Portable electronics
- Computers and peripherals
- Communication systems
- Audio and video equipment

Features


- Bi-directional ESD protection of 2 lines
- Low diode capacitance
- Max. peak pulse power :P_{PK}=130W at tp=8/20us
- Low clamping voltage: V_{CL(R)}=14V at I_{PP}=12A
- Ultra low leakage current: I_{RM}=1uA at V_{RWM}=5V
- ESD protection > 30V

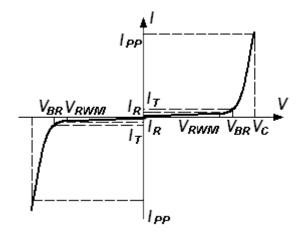
IEC61000-4-2;Level 4 (ESD)
IEC61000-4-5(Surge);I_{PP}=12A at tp=8/20us


Pb-Free package is available
 RoHS product for packing code suffix "G"

Halogen free product for packing code suffix "H"

Functional diagram

SOT-23



Absolute Ratings (T _{amb} =25°C)						
Symbol	Parameter	Value	Units			
P _{PP}	Peak Pulse Power (t _p = 8/20μs)	130	W			
T_L	Maximum lead temperature for soldering during 10s	260	ů			
T_{stg}	Storage Temperature Range	-55 to +155	Ŝ			
T_{op}	Operating Temperature Range	-40 to +125	°C			
T_j	Maximum junction temperature	150	°C			
V _{PP}	Electrostatic discharge IEC61000-4-2 (contact) IEC61000-4-2 HMB MIL-Std 883	30 10	kv			

Electrical Parameter

Symbol	Parameter					
I _{PP}	Maximum Reverse Peak Pulse Current					
V _C	Clamping Voltage @ I _{PP}					
V_{RWM}	Working Peak Reverse Voltage					
I _R	Maximum Reverse Leakage Current @ V _{RWM}					
I _T	Test Current					
V_{BR}	Breakdown Voltage @ I _T					

Electrical Characteristics									
Dorf Neuroboro	Rated Stand-off Voltage	Maximum Leakage Current	Breakdown Voltage		Maximum Clamping Voltage		Maximum Pulse Peak Current	Maximum Capacita nce	
Part Numbers		@ V _{RM}	1	mA V _B	R	1A 1)	5A 1)	tp=8/20us	0v, 1MHz
	V_{RM}	I _{RM}	V		V _{CL}		I _{PPM}	С	
	V	μД	Min	Тур	Max	V	V	А	pF
SESOTA05BC	5.0	1.0	5.5	6.7	9.5	9.8	10	12	35

Typical Characteristics

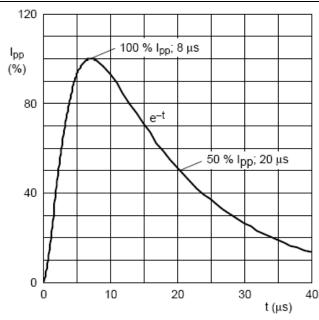


Fig1. 8/20us pulse waveform according to IEC61000-4-5

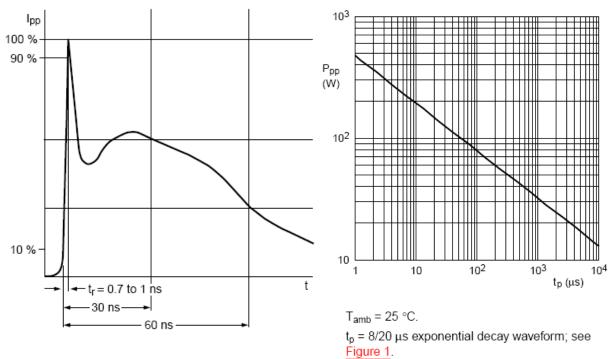
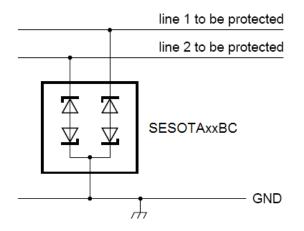
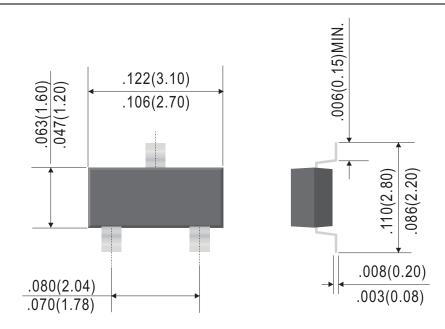


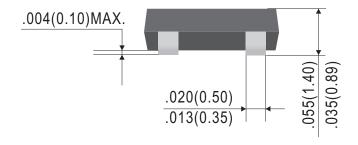
Fig2. ESD pulse waveform according to IEC 61000-4-2


Fig3.Peak pulse power dissipation as a function of pulse time;typical values

Application Note

Electrostatic discharge (ESD) is a major cause of failure in electronic systems. Transient Voltage Suppressors (TVS) are an ideal choice for ESD protection. They are capable of clamping the incoming transient to a low enough level such that damage to the protected semiconductor is prevented.


Surface mount TVS arrays offer the best choice for minimal lead inductance. They serve as parallel protection elements, connected between the signal line to ground. As the transient rises above the operating voltage of the device, the TVS array becomes a low impedance path diverting the transient current to ground. The SESOTA05BC array is the ideal board evel protection of ESD sensitive semiconductor components.


The tiny SOT-23 package allows design flexibility in the design of high density boards where the space saving is at a premium. This enables to shorten the routing and contributes to hardening against ESD.

Package mechanical data

Dimensions in inches and (millimeters)

Marking

Typenumber	Marking code
SESOTA05BC	5B