

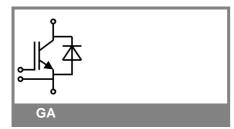
## **Ultra Fast IGBT Modules**

#### **SKM 600GA125D**

### **Features**

- NPT-IGBT with positive temperature coeffecient of  $V_{CEsat}$  . Short circuit self limiting to  $6 \times I_c$
- Corresponds to standards: IEC 60721-3-3 (humidity) class 3K3/IEC 68T.1 climate 40/125/56

## **Typical Applications\***


- Resonant inverters upto 100 kHz
- Inductive heating
- Electronic welders at f<sub>SW</sub> >20 kHz

### Remarks

- $I_{DC} \le 500A$  limited by terminals
- Take care of over-voltage caused by stray inductances.

| Absolute Maximum Ratings T <sub>c</sub> = 25 °C, unless otherwise specifications |                                                         |                           |                         | ecified |  |  |  |
|----------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------|-------------------------|---------|--|--|--|
| Symbol                                                                           | Conditions                                              |                           | Values                  | Units   |  |  |  |
| IGBT                                                                             |                                                         |                           |                         |         |  |  |  |
| $V_{CES}$                                                                        | T <sub>j</sub> = 25 °C                                  |                           | 1200                    | V       |  |  |  |
| I <sub>C</sub>                                                                   | T <sub>j</sub> = 150 °C                                 | T <sub>case</sub> = 25 °C | 580                     | Α       |  |  |  |
|                                                                                  |                                                         | T <sub>case</sub> = 80 °C | 400                     | Α       |  |  |  |
| I <sub>CRM</sub>                                                                 | I <sub>CRM</sub> =2xI <sub>Cnom</sub>                   |                           | 800                     | Α       |  |  |  |
| $V_{GES}$                                                                        |                                                         |                           | ± 20                    | V       |  |  |  |
| t <sub>psc</sub>                                                                 | $V_{CC}$ = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V | T <sub>j</sub> = 125 °C   | 10                      | μs      |  |  |  |
| Inverse D                                                                        | iode                                                    |                           |                         |         |  |  |  |
| I <sub>F</sub>                                                                   | T <sub>j</sub> = 150 °C                                 | $T_{case}$ = 25 °C        | 500                     | Α       |  |  |  |
|                                                                                  |                                                         | T <sub>case</sub> = 80 °C | 350                     | Α       |  |  |  |
| I <sub>FRM</sub>                                                                 | I <sub>FRM</sub> =2xI <sub>Fnom</sub>                   |                           | 800                     | Α       |  |  |  |
| I <sub>FSM</sub>                                                                 | t <sub>p</sub> = 10 ms; sin.                            | T <sub>j</sub> = 150 °C   | 3600                    | Α       |  |  |  |
| Module                                                                           |                                                         |                           |                         |         |  |  |  |
| I <sub>t(RMS)</sub>                                                              |                                                         |                           | 500                     | Α       |  |  |  |
| $T_{vj}$                                                                         |                                                         |                           | - 40 <b>+</b> 150 (125) | °C      |  |  |  |
| T <sub>stg</sub>                                                                 |                                                         |                           | 125                     | °C      |  |  |  |
| V <sub>isol</sub>                                                                | AC, 1 min.                                              |                           | 4000                    | V       |  |  |  |

| Characteristics $T_c =$ |                                                   | 25 °C, unless otherwise specified         |      |      |       |       |
|-------------------------|---------------------------------------------------|-------------------------------------------|------|------|-------|-------|
| Symbol                  | Conditions                                        |                                           | min. | typ. | max.  | Units |
| IGBT                    |                                                   |                                           |      |      |       |       |
| $V_{GE(th)}$            | $V_{GE} = V_{CE}$ , $I_{C} = 16 \text{ mA}$       |                                           | 4,5  | 5,5  | 6,5   | V     |
| I <sub>CES</sub>        | $V_{GE} = 0 V, V_{CE} = V_{CES}$                  | T <sub>j</sub> = 25 °C                    |      | 0,15 | 0,45  | mA    |
| V <sub>CE0</sub>        |                                                   | T <sub>j</sub> = 25 °C                    |      | 1,5  | 1,75  | V     |
|                         |                                                   | T <sub>j</sub> = 125 °C                   |      | 1,7  |       | V     |
| r <sub>CE</sub>         | V <sub>GE</sub> = 15 V                            | T <sub>j</sub> = 25°C                     |      | 4,5  | 5,3   | mΩ    |
|                         |                                                   | T <sub>j</sub> = 125°C                    |      | 6    |       | mΩ    |
| V <sub>CE(sat)</sub>    | I <sub>Cnom</sub> = 400 A, V <sub>GE</sub> = 15 V | T <sub>j</sub> = 25°C <sub>chiplev.</sub> |      | 3,3  | 3,85  | V     |
|                         |                                                   | $T_j = 125^{\circ}C_{chiplev.}$           |      | 4    |       | V     |
| C <sub>ies</sub>        |                                                   |                                           |      | 36   |       | nF    |
| C <sub>oes</sub>        | $V_{CE} = 25, V_{GE} = 0 V$                       | f = 1 MHz                                 |      | 3,8  |       | nF    |
| C <sub>res</sub>        |                                                   |                                           |      | 3,5  |       | nF    |
| $Q_G$                   | V <sub>GE</sub> = -8V - +20V                      |                                           |      | 4400 |       | nC    |
| R <sub>Gint</sub>       | T <sub>j</sub> = °C                               |                                           |      | 1,25 |       | Ω     |
| t <sub>d(on)</sub>      |                                                   |                                           |      | 80   |       | ns    |
| t <sub>r</sub>          | $R_{Gon} = 2.5 \Omega$                            | V <sub>CC</sub> = 600V                    |      | 70   |       | ns    |
| E <sub>on</sub>         |                                                   | I <sub>C</sub> = 400A                     |      | 30   |       | mJ    |
| t <sub>d(off)</sub>     | $R_{Goff}$ = 2,5 $\Omega$                         | T <sub>j</sub> = 125 °C                   |      | 570  |       | ns    |
| t <sub>f</sub>          |                                                   | $V_{GE} = \pm 15V$                        |      | 60   |       | ns    |
| E <sub>off</sub>        |                                                   |                                           |      |      |       | mJ    |
| $R_{\text{th(j-c)}}$    | per IGBT                                          |                                           |      |      | 0,041 | K/W   |





### Ultra Fast IGBT Modules

#### **SKM 600GA125D**

#### **Features**

- NPT-IGBT with positive temperature coeffecient of V<sub>CEsat</sub>
- Short circuit self limiting to 6 x I<sub>c</sub>
- Corresponds to standards: IEC 60721-3-3 (humidity) class 3K3/IEC 68T.1 climate 40/125/56

### Typical Applications\*

- Resonant inverters upto 100 kHz
- Inductive heating
- Electronic welders at f<sub>SW</sub> >20 kHz

### Remarks

- $I_{DC} \le 500A$  limited by terminals
- Take care of over-voltage caused by stray inductances.

| Characteristics      |                                                |                                          |           |      |       |           |
|----------------------|------------------------------------------------|------------------------------------------|-----------|------|-------|-----------|
| Symbol               | Conditions                                     |                                          | min.      | typ. | max.  | Units     |
| Inverse D            | Inverse Diode                                  |                                          |           |      |       | •         |
| $V_F = V_{EC}$       | $I_{Fnom}$ = 400 A; $V_{GE}$ = 0 V             |                                          |           | 2    | 2,5   | V         |
|                      |                                                | $T_j = 125  ^{\circ}C_{\text{chiplev.}}$ |           | 1,8  |       | V         |
| $V_{F0}$             |                                                | T <sub>j</sub> = 25 °C                   |           | 1,1  | 1,2   | V         |
|                      |                                                | T <sub>j</sub> = 125 °C                  |           |      |       | V         |
| r <sub>F</sub>       |                                                | T <sub>j</sub> = 25 °C                   |           | 2,3  | 3,3   | mΩ        |
|                      |                                                | T <sub>j</sub> = 125 °C                  |           |      |       | $m\Omega$ |
| I <sub>RRM</sub>     | I <sub>F</sub> = 400 A                         | T <sub>j</sub> = 125 °C                  |           | 460  |       | Α         |
| $Q_{rr}$             |                                                |                                          |           | 65   |       | μC        |
| E <sub>rr</sub>      | $V_{GE} = 0 \text{ V}; V_{CC} = 600 \text{ V}$ |                                          |           |      |       | mJ        |
| $R_{th(j-c)D}$       | per diode                                      |                                          |           |      | 0,09  | K/W       |
| Module               |                                                |                                          |           |      |       |           |
| L <sub>CE</sub>      |                                                |                                          |           | 15   | 20    | nΗ        |
| R <sub>CC'+EE'</sub> | res., terminal-chip                            | T <sub>case</sub> = °C                   |           | 0,18 |       | mΩ        |
| R <sub>th(c-s)</sub> | per module                                     |                                          |           |      | 0,038 | K/W       |
| M <sub>s</sub>       | to heat sink                                   |                                          | 3         |      | 5     | Nm        |
| M <sub>t</sub>       | to terminals                                   |                                          | 2,5 (1,1) |      | 5 (2) | Nm        |
| w                    |                                                |                                          |           |      | 330   | g         |

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

\* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our staff.





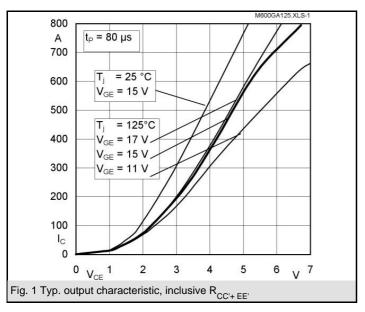
### **Ultra Fast IGBT Modules**

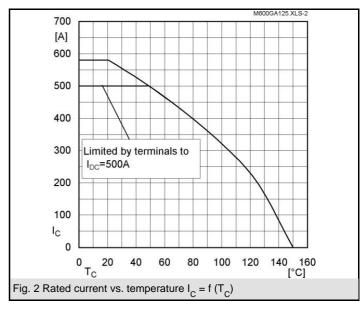
**SKM 600GA125D** 

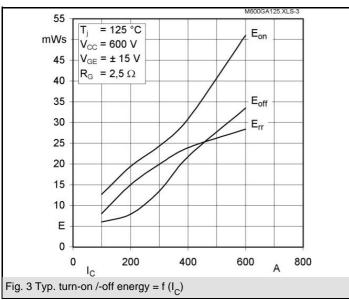
| Z <sub>th</sub>                  |            |        |       |
|----------------------------------|------------|--------|-------|
| Symbol                           | Conditions | Values | Units |
| Z,,,,,,,,,                       |            |        | •     |
| Z<br>R <sub>i</sub>              | i = 1      | 29     | mk/W  |
| $R_i$                            | i = 2      | 9      | mk/W  |
| R <sub>i</sub><br>R <sub>i</sub> | i = 3      | 2,6    | mk/W  |
| $R_{i}$                          | i = 4      | 0,4    | mk/W  |
| tau <sub>i</sub>                 | i = 1      | 0,1043 | s     |
| tau <sub>i</sub>                 | i = 2      | 0,009  | s     |
| tau <sub>i</sub>                 | i = 3      | 0,001  | s     |
| tau <sub>i</sub>                 | i = 4      | 0,0002 | s     |
| Z <sub>th(j-c)D</sub>            |            |        |       |
| R <sub>i</sub>                   | i = 1      | 62     | mk/W  |
| $R_{i}$                          | i = 2      | 23     | mk/W  |
| $R_i$                            | i = 3      | 4,2    | mk/W  |
| $R_{i}$                          | i = 4      | 0,8    | mk/W  |
| tau <sub>i</sub>                 | i = 1      | 0,0566 | s     |
| tau <sub>i</sub>                 | i = 2      | 0,0166 | s     |
| tau <sub>i</sub>                 | i = 3      | 0,0015 | s     |
| tau <sub>i</sub>                 | i = 4      | 0,0002 | s     |

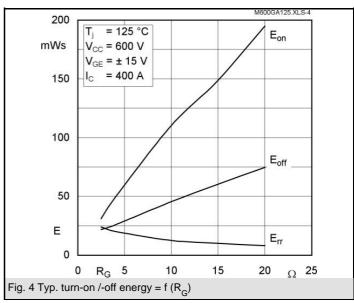
### **Features**

- NPT-IGBT with positive temperature coeffecient of  $V_{CEsat}$  . Short circuit self limiting to  $6 \times I_c$
- Corresponds to standards: IEC 60721-3-3 (humidity) class 3K3/IEC 68T.1 climate 40/125/56


## **Typical Applications\***


- Resonant inverters upto 100 kHz
- Inductive heating
- Electronic welders at f<sub>SW</sub> >20 kHz


### Remarks


- $I_{DC} \le 500A$  limited by terminals
- Take care of over-voltage caused by stray inductances.

