

POWER MANAGEMENT

Features

- Dual 2A Source, 4A Sink FET Drivers
- Second Channel Enable
- Independent Drive Supplies
- Auxiliary 2A Source, 4A Sink FET Driver
- Precision Reference Output
- Current Limit Reference Output (Analog) Integrated Current Sense Blanking (Digital Input)
- Digitally Controlled High Precision Current Limit
- Current Limit Flag
- Current Input ZVS Comparator
- SPI Communications 25 MHz
- Thermally Enhanced 4x4 (mm) MLPQ-UT-28 Package
- Lead-free, Halogen free, and RoHS/WEEE compliant

Applications

- Digitally Controlled Power Supplies
- Flyback Converter
- Boost Converter
- Forward Converter
- DC-DC and AC-DC Converters With Active Clamp
- PFC Converters With ZVT
- Constant Current Converter

Typical Application Circuit

Description

The SC531 combines three low side drivers with a high speed digitally programmable current limit and a zero voltage switching (ZVS) comparator. Two drivers are normally used to operate the FETs for the power stage. They can operate separately to drive individual power FETs or can be combined to drive a single device. A third, auxiliary, gate drive is controlled by an independent input and can be used to drive the FET for an active clamp or ZVT switching. All three drivers have an independent supply which allows each drive voltage to be optimized for high efficiency.

In addition, the SC531 has an SPI interface, 8-bit DAC, and current limit comparator to provide a high-speed digitally programmable current limit. This circuitry can be used for cycle by cycle current limiting or current waveform shaping. A digital output current limit flag is available for monitoring by the host controller.

The SC531 also has a current-input ZVS comparator that can be used to sense changes in high voltage nodes, such as the power FET drain and inductor node (LX) versus the power stage supply, (HV_{IN} in the typical application circuit).

Pin Configuration

Marking Information

Ordering Information

Device	Package	
SC531ULTRT ⁽¹⁾⁽²⁾	MLPQ-UT-28 4×4	
SC531EVB	Evaluation Board	

Notes:

(1) Available in tape and reel only. A reel contains 3,000 devices.

(2) Lead-free packaging only. Device is WEEE and RoHS compliant, and halogen free.

Absolute Maximum Ratings

PVDD1, PVDD2, PVDD3 (V)0.3 to +15.0
VCC (V)0.3 to +3.6
VREFH, CSENSE (V)0.3 to +(VCC+0.3)
ZVS, ZVSP, ZVSN(V)0.3 to +(VCC+0.3)
DIN, CS, CLK, A0 (V) \ldots -0.3 to +(VCC+0.3)
VREF, IN3, CLF, OE2B (V)0.3 to +(VCC+0.3)
BLANKB, IN, DAC, CSB (V)0.3 to +(VCC+0.3)
OUT1, OUT2, OUT3 (V)1 to +PVDD
ESD Protection Level $^{(1)}(kV)$ $\ldots \ldots$ $2kV$
PGND1, PGND2, PGND3, VREFL to GND (V)0.3 to +0.3

NOTES: Voltages are all referenced to GND (Pin 18).

Recommended Operating Conditions

Ambient Temperature Range (°C)40 \leq T _A \leq +115
PVDD1, PVDD2, PVDD3 (V) $6 \le PV_{DD} \le 12$
V_{cc} (V) $3.15 \le V_{cc} \le 3.46$
Maximum input Current for ZVSP, ZVSN (μ A) \leq 40

NOTES: PGND1, PGND2, PGND3 must be tied to GND.

Thermal Information

Thermal Resistance, Junction to Ambient ⁽²⁾ (°C/W).	32.5
Maximum Junction Temperature (°C)	+125
Storage Temperature Range (°C)	to +150
Peak IR Reflow Temperature (10s to 30s) (°C)	+260

Exceeding the above specifications may result in permanent damage to the device or device malfunction. Operation outside of the parameters specified in the Electrical Characteristics section is not recommended.

NOTES:

- (1) Tested according to JEDEC standard JESD22-A114-B.
- (2) Calculated from package in still air, mounted to 3" x 4.5", 4 layer FR4 PCB with thermal vias under the exposed pad per JESD51 standards.

Electrical Characteristics -

Unless otherwise noted, $T_A = +25^{\circ}$ C for Typ, -40°C to +115°C for Min and Max, $T_{J(MAX)} = 125^{\circ}$ C, $PV_{DD} = 6V$ to 12V, $V_{cc} = 3.15V$ to 3.46V, bypass capacitor on PV_{DD} , $V_{CC} = 2.2\mu$ F, $V_{REF} = V_{REFH} = 0.1\mu$ F

Parameter	Symbol	bol Conditions		Тур	Max	Units
Supply Section						
Combined PVDD Quiescent Current	I _{PVDDL}	Not switching, CSB=1, IN = IN3 = OE2B = low		1.5	2.5	mA
Combined PVDD Quiescent Current	I _{pvddh}	Not switching, CSB=1, IN = IN3 = VCC, OE2B = low		2.2	3.5	mA
V _{cc} Quiescent Current	I _{vcc}	Not switching, CSB=1		0.8	1.4	mA
PVDD UVLO Enable Voltage		PVDD rising: UVLO sensing on PVDD1 only	4.25	4.5	4.75	V
PVDD UVLO Hysteresis	PV _{HYS}	UVLO sensing on PVDD1 only		250		mV
V _{cc} UVLO Threshold	VCC	V _{cc} rising	2.65	2.8	2.95	V
V _{cc} UVLO Hysteresis	VCC _{UVLO(HYS)}	V _{cc} falling		100		mV
Digital Section						
Digital Input High	V _{IH}	IN, DIN, CSB, CLK, A0, IN3, OE2B	2.1			V
Digital Input Low	V _{IL}	IN, DIN, CSB, CLK, A0, IN3, OE2B			0.8	V
Digital Input High (BLANKB)	V _{IH_BLNK}		2.1			V
Digital Input Low (BLANKB)	V _{IL_BLNK}				0.4	V

Electrical Characteristics (continued)

Parameter	Symbol	Conditions	Min	Тур	Мах	Units
Digital Section (continued)						
Digital Output High	V _{OH}	CLF, ZVS, ILOAD=7mA	2.64			V
Digital Output Low	V _{ol}	CLF, ZVS, ILOAD=-7mA			0.66	V
BLANKB pull-up resistance	R _{blankb}	internal pull-up to V _{cc}	2.1	3.3	4.5	kΩ
SPI CLK Frequency	f _{clk}			25		MHz
SPI CLK High & Low Time	t _{spi}		15			ns
CSB, DIN to Clock Falling Edge Setup and Hold Time	t _{sH}				5	ns
Chip Select Reset Time	t _{csb}		10			ns
DAC Section						
DAC Response Time	t _{response}	Settling to within 1LSB		0.5		μs
DAC INL	INL		-1		1	LSB
DAC DNL	DNL		-0.2		0.2	LSB
Voltage Reference	V _{REF}	VREF/VREFH, HiZ voltmeter	0.245		0.255	V/V
Voltage Reference Buffer Offset	V _{BOFFSET}		-5		5	mV
Voltage Ref Divider Resistance	R_{REF}		384	640	896	kΩ
Current Sense Comparator Section	I					
Current Sense Voltage Range	V_{sense}		0		1.2	V
Comparator Offset Voltage	V _{COFFSET}		-6		6	mV
CSENSE to CLF Propagation Delay	t _{clf}			25	40	ns
CSENSE to Driver Output Propaga- tion Delay	t _{DRIV}	1nF load, 60mV overdrive, 10% to 90% of drive output		45	70	ns
Driver Section	Driver Section					
Driver OUT1, OUT2, OUT3 Resistance (Sourcing)	R _{dsp1,2,3}			1.5	3	Ω
Driver OUT1, OUT2, OUT3 Resistance (Sinking)	R _{dsn1,2,3}			0.7	1.5	Ω
Rise Time — OUT1, OUT2, OUT3	t _{RISE1,2,3}	PVDD=8V, load capacitance=1nF		10		ns
Fall Time — OUT1, OUT2, OUT3	t _{FALL1,2,3}	PVDD=8V, load capacitance=1nF		5		ns
Propagation Delay from IN to OUT1, OUT2	t _{PROP1,2}	PVDD=8V, load capacitance=1nF		25	45	ns

Electrical Characteristics (continued)

Parameter	Symbol	Conditions		Тур	Max	Units			
Driver Section (continued)	Driver Section (continued)								
Propagation Delay from IN3 to OUT3	t _{prop3}	No load		25	45	ns			
OUT _x Minimum On-time		PVDD _x = 8V, COUT = 1nF	25		100	ns			
Driver 1,2,3 Switching Frequency	,2,3 Switching Frequency $f_{_{1,2,3}}$				800	kHz			
ZVS Section									
ZVSP, ZVSN Offset Current	I _{zvs}	10μA < Input current < 40μA	-3	0	3	μΑ			
ZVSP, ZVSN to GND Voltage	V _{zvs}	0μA < Input current < 40μA			5	V			
Response Time (ZVS falling)	$t_{_{ZVS_falling}}$	10μA <input 40μa,="" 5μa="" current<="" overdrive<="" td=""/> <td></td> <td>25</td> <td>40</td> <td>ns</td>		25	40	ns			
Response Time (ZVS rising)	$t_{_{ZVS_rising}}$	10μA <input 10μa="" 40μa,="" current<="" overdrive<="" td=""/> <td></td> <td></td> <td>0.5</td> <td>μs</td>			0.5	μs			

Pin Descriptions

Pin #	Pin Name	Signal Type	Pin Function	
1	AO	Digital input	Address for SPI interface	
2	ZVSP	Analog input	ZVS comparator positive input	
3	ZVSN	Analog input	ZVS comparator negative input	
4	VCC	Power input	Input supply voltage. Connect a 2.2uF bypass capacitor from VCC to GND.	
5	ZVS	Digital output	ZVS comparator output	
6	PGND3	GROUND	Driver 3 power ground.	
7	OUT3	Power output	Driver 3 output	
8	PVDD3	Power input	Driver 3 supply voltage. Connect a 2.2uF bypass capacitor from PVDD3 to PGND3.	
9	IN3	Digital input	Driver 3 signal input	
10	IN	Digital input	Driver 1 and 2 signal input	
11	BLANKB	Digital input	Current limit blanking input	
12	CLF	Digital output	Current limit flag	
13	DAC	Analog output	DAC output	
14	VREF	Analog input/output	Reference Voltage	
15	VREFL	Analog input	Low reference for VREF resistor divider and DAC. Typically connected to GND.	
16	CSENSE	Analog input	Current sense input	
17	VREFH	Analog input	High reference for top of VREF resistor divider	
18	GND	GROUND	IC Ground	
19	DIN	Digital input	SPI data input	
20	CLK	Digital input	SPI clock input	
21	CSB	Digital input	SPI chip select input	
22	OE2B	Digital input	Driver 2 enable	
23	PGND2	GROUND	Driver 2 power ground	
24	OUT2	Power output	Driver 2 output	
25	PVDD2	Power input	Driver 2 supply voltage. Connect a 2.2uF bypass capacitor from PVDD2 to PGND2.	
26	PVDD1	Power input	Driver 1 supply voltage. Connect a 2.2uF bypass capacitor from PVDD1 to PGND2.	
27	OUT1	Power output	Driver 1 output	
28	PGND1	GROUND	Driver 1 power ground	
Т	Thermal Pad	GROUND	Connected to GND, use multiple thermal vias for heatsinking purposes	

Block Diagram

Typical Characteristics

OUT3 Rise Time

OUT1 Current Limit With CLF Flag

OUT3 Fall Time

SPI to DAC Response Time

Applications Information

Gate Drivers 1 and 2

The high-current output stage in the SC531 is capable of providing 2A source, 4A sink peak current and voltage swings from PVDD to PGND for both OUT1 and OUT2. These outputs can drive individual power FETs which can be used in parallel or can be combined to drive one larger device. The second output (OUT2) can be disabled to save power by setting OE2B input to a logic high. If OE2B is set high during normal switching operation, the OUT2 output is not disabled until the next falling edge of IN.

The driver outputs follow the state of the IN pin. When IN is high OUT1 and OUT2 (if OE2B is low) are high. The outputs will be pulled low when IN goes low or when the current limit is reached.

Reference Divider, Buffer, DAC, and Current Limit Comparator

The SC531 contains a reference divider, buffer, DAC, and current limit comparator that combine to provide a highspeed and high-accuracy programmable current limit. The reference voltage is generated by a resistive divide by four from VREFH to VREFL. This voltage is referenced at the VREF pin. Alternatively, an external reference can drive the VREF pin if a different value is desired. The equation for the VREF voltage is shown below.

$$\mathsf{VREF} = \frac{\mathsf{VREFH} + 3 \cdot \mathsf{VREFL}}{4}$$

The VREFL input must be within +/-300mV of the GND pin and is typically connected to analog ground.

The VREF voltage is buffered and then used as the reference for the 8-bit DAC. The 8-bit DAC is controlled by the SPI (see next section for protocol information). The output of the DAC connects to the DAC pin and to the negative input of the current limit comparator.

The positive input of the current limit comparator is connected to the CSENSE pin through blanking circuitry. When the BLANKB pin is held low the CSENSE pin is disconnected from the comparator and the positive input is shorted to ground. The BLANKB pin has an internal pullup resistance of 3.3 k Ω to V_{cc}. If the BLANKB pin is not held low, then the output of the current limit comparator will be determined by the CSENSE and DAC voltages. If the DAC voltage is greater than CSENSE then the output of the comparator will be low. If the CSENSE voltage is greater than the DAC voltage then the output of the comparator will go high causing the CLF flag to go high and OUT1 and OUT2 to be driven low. This event is latched and will not be released until CSENSE goes below DAC and the IN pin goes from low to high.

SPI Interface

A write sequence begins by bringing CSB low. Once CSB is low, the data on the DIN line is clocked into the 16-bit shift register on the falling edges of CLK. On the 16th falling clock edge, the last data bit is clocked in and the DAC is updated. CSB can be held low or high at this point and any data or clock pulses following the 16th falling clock edge are ignored. CSB must be brought high for the minimum specified time before the next write sequence is initiated with the falling edge of CSB. Figure 3 shows the Serial Timing Diagram and Figure 4 shows the Input Register Contents.

ZVS Comparator

The ZVS comparator is a current-input (Norton) comparator that provides information that the ZVS condition has been reached by comparing the LX node to HV_{IN} . The falling edge of the power FET LX node going below HV_{IN} (ZVS output going low) is the faster edge. The structure of the comparator allows fast detection with a large voltage range. Series resistors are placed from LX to ZVSP and HV_{IN} to ZVSN. The resistor value should be chosen based on the voltage levels that are being compared and should be optimized to produce input currents in the 10-40µA range. The ZVSP and ZVSN pins can vary from 2-4V based on this normal input current range.

The ZVSN and ZSVP input pins can tolerate currents up to 300μ A, but the accuracy and speed specifications are only valid in the $10-40\mu$ A range.

Applications Information (continued)

Gate Driver 3

Gate Driver 3 is a third auxiliary gate drive that is controlled by the IN3 pin, an independent input. It has a separate power supply (PVDD3) and ground (PGND3) connection. The output OUT3 is 2A source, 4A sink capable. This output can be used as a general purpose driver which can be used to drive the FET for an active clamp or active snubber. Other uses include driving the FET for softswitching ZVT or to drive a secondary PWM output.

Applications

The SC531 is suited for applications which contain a microcontroller or DSP to control PWM switching. The auxiliary OUT3 output and the DAC controlled current limit can be used to implement a variety of switching topologies.

By driving the IN3 input with a signal that is inverted from the IN1 input, the OUT3 driver can be used to drive an external P-channel FET for an active clamp converter. In addition, the DAC can be programmed to vary in real-time as a function of the main error voltage from the system microcontroller. This causes each OUT1/2 pulse to terminate when the peak current reaches the real-time DAC setting, resulting in current-mode operation. Combining the DAC control with the external P-channel FET circuitry results in an Active Clamp Current Mode Converter. Refer to Figure 1.

The above converter can also be used to provide a programmable constant current output by setting the DAC to a constant value. The IN input has a longer duty cycle than is required to maintain the output, but each OUT1/2 pulse is terminated early by the current limit function. The average current to the load will equal the peak inductor current reduced by 50% of the inductor ripple current.

The OUT3 output can be used to drive the FET for a ZVT switch such as is used in PFC boost converters. The ZVS comparator can be used to detect when the ZVT FET has completed its discharge of the main FET by connecting two additional resistors to the ZVS inputs, R_{z_1} and R_{z_2} , and resistors RZ3 and RZ4 should be selected to keep the keep the ZVSP/N input current below 300uA at maximum VIN. Refer to Figure 2.

PCB Layout Guidelines

Any switch-mode converter requires a good PCB layout to achieve best performance. The following guidelines should be followed to produce an optimum PCB layout.

All bypass capacitors should be located close to the pins which they connect to. Use short, direct copper traces to connect between the capacitor and the IC pins. Bypass capacitors should be placed on the same side of the PCB as the IC. Use a 2.2μ F minimum capacitor for all bypassing. The pins which require bypass capacitors are shown below:

- VCC, GND
- PVDD1, PGND1
- PVDD2, PGND2
- PVDD3, PGND3

The connections between the PGND pins and the power FETs should be short and direct, using a ground plane if available. If vias are required use multiple vias to reduce impedance between the IC and the FETs. The gate traces should be short and direct. Use wide, short gate traces to reduce susceptibility to noise generated by nearby FET switching. The gate trace routings should avoid any of the FET drain nodes.

The CSENSE signal should be referenced to GND (analog ground). A capacitor on the CSENSE input should be located near the CSENSE pin and connected to GND, and connected to the IC with short direct traces.

Any VREFH, VREFL, or VREF bypass capacitors should be placed close to the pins, routed with direct traces, and connected to GND.

Applications Information (continued)

Figure 1 — Current-Mode Forward Converter With Active Clamp

Figure 2 — ZVT Switching PFC Boost Converter

Applications Information (continued)

Figure 4 — Input Register Contents

Outline Drawing – 4x4 MLPQ-UT28

Land Pattern – 4x4 MLPQ-UT28

	DIMENSIONS				
DIM	INCHES	MILLIMETERS			
С	(.156)	(3.95)			
G	.122	3.10			
н	.104	2.65			
к	.104	2.65			
Р	.016	0.40			
х	.008	0.20			
Y	.033	0.85			
Z	.189	4.80			

NOTES:

- 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
- 2. THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY. CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR COMPANY'S MANUFACTURING GUIDELINES ARE MET.
- 3. THERMAL VIAS IN THE LAND PATTERN OF THE EXPOSED PAD SHALL BE CONNECTED TO A SYSTEM GROUND PLANE. FAILURE TO DO SO MAY COMPROMISE THE THERMAL AND/OR FUNCTIONAL PERFORMANCE OF THE DEVICE.
- 4. SQUARE PACKAGE-DIMENSIONS APPLY IN BOTH X AND Y DIRECTIONS.

© Semtech Corporation

All rights reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights. Semtech assumes no responsibility or liability whatsoever for any failure or unexpected operation resulting from misuse, neglect improper installation, repair or improper handling or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified range.

SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF SEMTECH PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER'S OWN RISK. Should a customer purchase or use Semtech products for any such unauthorized application, the customer shall indemnify and hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages and attorney fees which could arise.

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Contact Information

Semtech Corporation Power Management Products Division 200 Flynn Road, Camarillo, CA 93012 Phone: (805) 498-2111 Fax: (805) 498-3804

www.semtech.com