

NPN BSX62-BSX63

SWITCHING TRANSISTORS

The BSX62 and BSX63 are NPN switching transistors mounted in TO-39 metal package. They are intended for use in medium power switching. High current and low voltage. Compliance to RoHS.

ABSOLUTE MAXIMUM RATINGS

Symbol	Ratings		Val	Value		
Symbol			BSX62	BSX63	- Unit	
V _{CEO}	Collector-Emitter Voltage	I _B =0	40	60	V	
V _{CBO}	Collector-Base Voltage	I _E =0	60	80	V	
V _{EBO}	Emitter-Base Voltage I _c =0		5	5		
I _C	Collector Current		3	3		
I _{CM}	Collector Peak Current		3	3		
I _{BM}	Base Peak Current		50	500		
PD	Total Power Dissipation $T_{amb} = 25^{\circ}$		5	5		
TJ	Junction Temperature		20	0		
T _{amb}	Operating ambient temperature		-65 to	-65 to +150		
T _{Stg}	Storage Temperature rang	e	-65 to +150			

THERMAL CHARACTERISTICS

Symbol	Ratings	Value	Unit
R _{thJ-a}	Thermal Resistance, Junction to ambient	200	°C/W
R _{thJ-c}	Thermal Resistance, Junction to case	28	°C/W

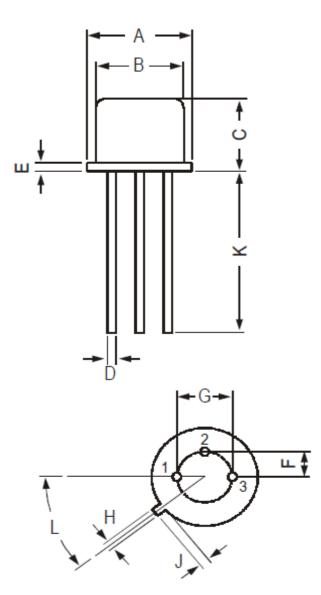
SWITCHING TIMES

Symbol	Ratings		Value	Unit
t _{on}	Turn-on time	$I_{Con} = 1 \text{ A}; I_{Bon} = 50 \text{ mA}$	300	ns
t _{off}	Turn-off time	I _{Boff} = -50 mA	1.5	μs

NPN BSX62-BSX63 ELECTRICAL CHARACTERISTICS

Tj=25°C unless otherwise specified

Symbol	Ratings	Test Condit	ion(s)	Min	Тур	Мах	Unit
		$V_{CB} = 40 \text{ V}, I_E = 0$ $V_{CB} = 60 \text{ V}, I_E = 0$	BSX62 BSX63	-	-	100	nA
I _{CBO}	Collector Cutoff Current	$V_{CB} = 40 \text{ V}, \text{ I}_{E} = 0$ $V_{CB} = 40 \text{ V}, \text{ I}_{E} = 0$ $T_{i} = 150^{\circ}\text{C}$	BSX62			100	μA nA V V V
		$V_{CB} = 60 \text{ V}, \text{ I}_{E} = 0$ T _j = 150°C	BSX63		-	100	
I _{EBO}	Emitter Cutoff Current	$V_{BE} = 5.0 \text{ V}, I_{C} = 0$		-	-	100	nA
V _{CE(SAT)}	Collector-Emitter	$I_{\rm C} = 1 \text{ A}, I_{\rm B} = 100 \text{ mA}$		-	-	0.7	
CE(SAT)	saturation Voltage	$I_{\rm C} = 2 \text{ A}, I_{\rm B} = 200 \text{ mA}$		-	-	0.8	
V _{BE(SAT)}	Base-Emitter saturation	$I_{\rm C} = 1 \text{ A}, I_{\rm B} = 100 \text{ mA}$		-	-	1.2	
BE(SAT)	Voltage	$I_{\rm C} = 2 \text{ A}, I_{\rm B} = 200 \text{ mA}$		-	-	1.3	•
	Base-Emitter Voltage	$I_{C} = 100 \text{ mA}, V_{CE} = 1$	V	-	-	1	
V _{BE}		$I_{C} = 1 A, V_{CE} = 1 V$		1	-	1.2	V
		$I_{C} = 2 A, V_{CE} = 5 V$		-	-	1.3	
	DC Current Gain	1 100	BSX62/10		110	-	
		$I_{\rm C} = 100 {\rm m}$	BSX63/10			80 -	
		$V_{CE} = 1 V$	BSX62/16		180		
			BSX63/16 BSX62/10				
h		$I_c = 1 A$	BSX63/10	63 100	100	160	
h _{FE}		$V_{CE} = 1 V$	BSX62/16				
		VCE - I V	BSX63/16	100	100 160	250	
			BSX62/10				
		$I_{\rm C} = 2$ A	BSX63/10	70 120	70	-	
		$V_{CE} = 1 V$	BSX62/16				
			BSX63/16		120	-	
f _T	Transition frequency	$I_{C} = 200 \text{ mA}, V_{CE} = 10 \text{ V}$ f = 100MHz		30	70	-	MHz
Cc	Collector capacitance	$I_E = i_e = 0, V_{CB} = 10 V$ f = 1MHz		-	-	70	pF



NPN BSX62-BSX63

MECHANICAL DATA CASE TO-39

DIMENSIONS (mm)		
	min	max
А	8.50	9.39
В	7.74	8.50
С	6.09	6.60
D	0.40	0.53
E	-	0.88
F	2.41	2.66
G	4.82	5.33
Н	0.71	0.86
J	0.73	1.02
K	12.70	-
L	42°	48°

Pin 1 :	Emitter
Pin 2 :	Base
Pin 3 :	Collector
Case :	Collector

Revised August 2012

Information furnished is believed to be accurate and reliable. However, Comset Semiconductors assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. Data are subject to change without notice. Comset Semiconductors makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Comset Semiconductors assume any liability arising out of the application or use of any product and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Comset Semiconductors' products are not authorized for use as critical components in life support devices or systems.

www.comsetsemi.com

info@comsetsemi.com