T-13/4 (5 mm) Diffused LED Lamps

Technical Data

HLMP-3301
HLMP-3401
HLMP-3507
HLMP-3762
HLMP-3862
HLMP-3962
HLMP-D401

Features

- High Intensity
- Choice of 4 Bright Colors High Efficiency Red Orange
Yellow
High Performance Green
- Popular T-13/4 Diameter Package
- Selected Minimum Intensities
- Wide Viewing Angle
- General Purpose Leads
- Reliable and Rugged
- Available on Tape and Reel

Description

This family of T-13/4 tinted, diffused LED lamps is widely used in general purpose indicator applications. Diffusants, tints, and optical design are balanced to yield superior light output and wide viewing angles. Several

Selection Guide

Material/Color	Part Number	Luminous Intensity Iv (mcd) at 10 mA	
		Min.	Max.
GaP HER	HLMP-3301	5.4	-
	HLMP-3301-D00xx	2.1	-
	HLMP-3301-F00xx	5.4	-
	HLMP-3301-FG0xx	5.4	17.2
	HLMP-3762	8.6	-
	HLMP-3762-G00xx	8.6	-
GaP Yellow	HLMP-3401	5.7	-
	HLMP-3401-E00xx	5.7	-
	HLMP-3401-EF0xx	5.7	18.4
	HLMP-3401-EFBxx	5.7	18.4
	HLMP-3862	9.2	-
	HLMP-3862-F00xx	9.2	-
	HLMP-3862-FGBxx	9.2	29.4
GaP Orange	HLMP-D401	5.4	-
	HLMP-D401-D00xx	2.1	-
	HLMP-D401-EF0xx	3.4	10.8
	HLMP-D401-F00xx	5.4	-
GaP Green	HLMP-3507	4.2	-
	HLMP-3507-D00xx	4.2	-
	HLMP-3507-EF0xx	6.7	21.2
	HLMP-3962	10.6	-
	HLMP-3962-F00xx	10.6	-

Part Numbering System

Package Dimensions

Optical/Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Symbol	Parameter	Color	Min.	Typ.	Max.	Units	Test Condition
$2 \theta^{1 / 2}$	Included Angle Between Half Luminous Intensity Points	High Efficiency Red Orange Yellow Green		$\begin{aligned} & 60 \\ & 60 \\ & 60 \\ & 60 \end{aligned}$		Deg.	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ See Note 1
$\lambda_{\text {PEAK }}$	Peak Wavelength	High Efficiency Red Orange Yellow Green		$\begin{aligned} & 635 \\ & 600 \\ & 583 \\ & 565 \end{aligned}$		nm	Measurement at Peak
$\Delta \lambda_{1 / 2}$	Spectral Line Halfwidth	HER/Orange Yellow Green		$\begin{aligned} & 40 \\ & 36 \\ & 28 \end{aligned}$		nm	
$\lambda_{\text {d }}$	Dominant Wavelength	High Efficiency Red Orange Yellow Green		$\begin{aligned} & 626 \\ & 602 \\ & 585 \\ & 569 \end{aligned}$		nm	See Note 2
$\tau_{\text {s }}$	Speed of Response	High Efficiency Red Orange Yellow Green		$\begin{gathered} 90 \\ 280 \\ 90 \\ 500 \end{gathered}$		ns	
C	Capacitance	High Efficiency Red Orange Yellow Green		$\begin{gathered} 11 \\ 4 \\ 15 \\ 18 \end{gathered}$		pF	$\begin{aligned} & \mathrm{V}_{\mathrm{F}}=0 ; \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
$R \theta_{\text {J-PIN }}$	Thermal Resistance	All		260		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
V_{F}	Forward Voltage	HER/Orange Yellow Green		$\begin{aligned} & \hline 1.9 \\ & 2.0 \\ & 2.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.4 \\ & 2.7 \end{aligned}$	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
V_{R}	Reverse Breakdown Voltage	All	5.0			V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
η_{V}	Luminous Efficacy	High Efficiency Red Orange Yellow Green	$\begin{aligned} & \text { - } \\ & \text { _ } \end{aligned}$	$\begin{aligned} & 145 \\ & 380 \\ & 500 \\ & 595 \end{aligned}$		$\frac{\text { lumens }}{\text { Watt }}$	See Note 3

Notes:

1. $\theta^{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity, I_{e}, in Watts/steradian, may be found from the equation $I_{e}=I_{v} / \eta_{v}$, where I_{v} is the luminous intensity in candelas and η_{v} is the luminous efficacy in lumens/Watt.

Absolute Maximum Ratings at $\mathbf{T}_{\mathbf{A}}=\mathbf{2 5}^{\circ} \mathbf{C}$

Parameter	HER/Orange	Yellow	Green/ Emerald Green	Units
Peak Forward Current	90	60	90	mA
Average Forward Current ${ }^{[1]}$	25	20	25	mA
DC Current ${ }^{[2]}$	30	20	30	mA
Power Dissipation ${ }^{[3]}$	135	85	135	mW
Reverse Voltage ($\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$)	5	5	5	V
Transient Forward Current ${ }^{[4]}$ ($10 \mu \mathrm{sec}$ Pulse)	500	500	500	mA
LED Junction Temperature	110	110	110	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	-55 to +100	-55 to +100	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range			-55 to +100	
Lead Soldering Temperature [1.6 mm (0.063 in.) from body]	$260{ }^{\circ} \mathrm{C}$ for 5 seconds			

Notes:

1. See Figure 5 (Red/Orange), 10 (Yellow), or 15 (Green) to establish pulsed operating conditions.
2. For Red, Orange and Green series derate linearly from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. For Yellow series derate linearly from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
$3.1 .8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Yellow series derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Figure 1. Relative Intensity vs. Wavelength.

T-1³/4 High Efficiency Red, Orange Diffused Lamps

Figure 2. Forward Current vs. Forward Voltage Characteristics.

Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. ($\mathrm{I}_{\text {DC }}$ MAX as per MAX Ratings).

Figure 3. Relative Luminous Intensity vs. DC Forward Current.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

Figure 6. Relative Luminous Intensity vs. Angular Displacement.

T-13/4 Yellow Diffused Lamps

Figure 7. Forward Current vs.
Forward Voltage Characteristics.

Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration. ($I_{\text {DC }}$ MAX as per MAX Ratings).

Figure 8. Relative Luminous Intensity vs. Forward Current.

Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 11. Relative Luminous Intensity vs. Angular Displacement.

T-1 ${ }^{3} / \mathbf{4}$ Green/Emerald Green Diffused Lamps

Figure 12. Forward Current vs. Forward Voltage Characteristics.

Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration. ($\mathrm{I}_{\text {DC }}$ MAX as per MAX Ratings).

Figure 13. Relative Luminous Intensity vs. DC Forward Current.

Figure 14. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

Figure 16. Relative Luminous Intensity vs. Angular Displacement.

Intensity Bin Limits

Color	Bin	Intensity Range (mcd) Min.	
	Max.		

Intensity Bin Limits, continued

Color	Bin	Intensity Range (mcd)	
		Min.	Max.
Green	D	4.7	7.6
	E	7.6	12.0
	F	12.0	19.1
	G	19.1	30.7
	H	30.7	49.1
	I	49.1	78.5
	J	78.5	125.7
	K	125.7	201.1
	L	201.1	289.0
	M	289.0	417.0
	N	417.0	680.0
	O	680.0	1100.0
	P	1100.0	1800.0
	Q	1800.0	2700.0
	R	2700.0	4300.0
	S	4300.0	6800.0
	T	6800.0	10800.0
	U	10800.0	16000.0
	V	16000.0	25000.0
	W	25000.0	40000.0

Maximum tolerance for each bin limit is $\pm 18 \%$.

Color Categories

Color	Category \#	Lambda (nm)	
		Min.	Max.
Green	6	561.5	564.5
	5	564.5	567.5
	4	567.5	570.5
	3	570.5	573.5
	2	573.5	576.5
Yellow	1	582.0	584.5
	3	584.5	587.0
	2	587.0	589.5
	4	589.5	592.0
	5	592.0	593.0
Orange	1	597.0	599.5
	2	599.5	602.0
	3	602.0	604.5
	4	604.5	607.5
	5	607.5	610.5
	6	610.5	613.5
	7	613.5	616.5
	8	616.5	619.5

[^0]
Mechanical Option Matrix

Mechanical Option Code	Definition
00	Bulk Packaging, minimum increment $500 \mathrm{pcs} / \mathrm{bag}$
01	Tape \& Reel, crimped leads, minimum increment $1300 \mathrm{pcs} / \mathrm{bag}$
02	Tape \& Reel, straight leads, minimum increment $1300 \mathrm{pcs} / \mathrm{bag}$
B1	Right Angle Housing, uneven leads, minimum increment $500 \mathrm{pcs} / \mathrm{bag}$
B2	Right Angle Housing, even leads, minimum increment $500 \mathrm{pcs} / \mathrm{bag}$
DD	Ammo Pack, straight leads with minimum increment $2 \mathrm{~K} / \mathrm{pack}$
R4	Tape \& Reel, straight leads, counter clockwise, anode lead leaving the reel first

Note:

All categories are established for classification of products. Products may not be available in all categories. Please contact your local Agilent representative for further clarification/information.

[^0]: Tolerance for each bin limit is $\pm 0.5 \mathrm{~nm}$.

