
1/26October 2001

AN1177
APPLICATION NOTE

P51XA/PSD8XX Design Guide

CONTENTS

■ In-System Programming
and In-Application re-
Programming

– The IAP Problem

– A Common Solution

■ Physical Connections

■ Simple Design Example

– Memory Map

– PSDsoft Express Design
Entry

■ Enhanced Design Example

– Required Changes in the
PSDsoft Express Design
Entry

– Memory Map

■ Conclusion

■ References

■ Appendix A: Connecting to
a PSD813F with no
Secondary Memory

Flash PSD8XX devices are members of a family of Flash mem-
ory-based peripherals for use with embedded microcontrollers
(MCUs). These programmable system devices (PSDs) consist
of memory, logic, and I/O. When coupled with a low-cost
P51XA MCU, the PSD forms a complete embedded flash sys-
tem that is 100% In-System Programmable (ISP) and In-Appli-
cation Programmable (IAP). There are many features in the
PSD silicon and in the PSDsoft Express development software
that make ISP easy, regardless of how much experience you
have with embedded design.

This document offers two designs using a ST PSD813F2 and
a Philips P51XA MCU. Note that a variety of 8-bit MCU/MPUs
can be used in place of the Philips part. Although the specifics
of this document are based on the P51XA, this document can
be used as a guide for other MCU/MPU applications. The first
design is a simple system to get up and running quickly for ba-
sic applications or to check out your prototype P51XA hard-
ware. The second design illustrates the use of enhanced
features of PSD In-System Programming as applied to the
P51XA. You can start with the first design and migrate to the
second as your functional requirements grow. There are other
members of the PSD8XX family, including the PSD813F1/F3/
F4/F5, the PSD833F2/834F2, and the PSD835G2. See the se-
lector guide on the website for a comparison of the products.
This application note is applicable to all PSD8XX family mem-
bers.

IN-SYSTEM PROGRAMMING AND IN-APPLICATION RE-
PROGRAMMING

Our industry uses the term In-System Programming (ISP) in a
general sense. ISP is applicable to programmable logic, as well
as programmable Non-Volatile Memory (NVM). However, an
additional term will be used in this document: In-Application
Programming (IAP). There are subtle yet significant differences
between ISP and IAP when microcontrollers are involved. ISP
of memory means that the MCU is off-line and not involved
while memory is being programmed. For IAP, the MCU partici-
pates in programming the memory, which is important for sys-
tems that must be online while updating firmware. Often, ISP is
well suited for manufacturing, while IAP is appropriate for field

AN1177 - APPLICATION NOTE

2/26

updates. PSD8XX devices are capable of both ISP and IAP. Keep in mind that IAP can only program the
memory sections of the PSD and not the configuration and programmable logic portions. With ISP, the
entire PSD can be erased or programmed.

The IAP Problem

Typically, a host computer downloads firmware into an embedded flash system through a communication
channel that is controlled by the MCU. This channel is usually a UART, but any communication channel
that the P51XA supports will do. The P51XA must execute the code that controls the IAP process from an
independent memory array that is not being erased or programmed. Otherwise, boot code and Flash
memory programming algorithms (IAP loader code) will be unavailable to the P51XA. It is absolutely nec-
essary to use an alternate memory array (an independent memory that is not being programmed) to store
the IAP loader code.

A system designer must choose the type of alternate memory to store IAP loader code (ROM, SRAM,
FLASH, or EEPROM); each type has advantages and disadvantages. This alternate memory may reside
external to the MCU or on-chip. A top-level view of an embedded IAP flash system with external memory
is shown in Figure 1.

Figure 1. Embedded Flash System Capable of IAP (5 devices)

Another problem, which is specific to the P51XA architecture, is related to the separate “Program” and
“Data” address spaces. The P51XA cannot write to Program space, but that is where the Flash memory
resides that holds P51XA firmware. How can one program Flash memory in-system if the P51XA cannot
write to program space?

A Common Solution

Without a PSD device, implementing IAP with the P51XA can be difficult and time consuming. Philips’ ap-
plication note AN440 contains a RAM loader program (bootstrap loader). It shows how to load code into
an external RAM over a serial link after power-up and how to switch execution to that RAM to complete
the boot sequence. This can be a cumbersome and error prone exercise using re-locatable code in volatile
memory, which is difficult to debug, vulnerable to power outages, and not supported by all emulators. Ad-
ditionally, this method restricts the designer to using a UART to implement IAP.

To overcome the issue of Program versus Data space, a common practice is to combine the two address
spaces, which reduces the total address space of the P51XA by 50%.

A BETTER, INTEGRATED SOLUTION

Figure 2 shows a two-chip solution using an Flash PSD813F. This system has ample main Flash memory,

AI03326B

Embedded System

System I/O

CPLD
P51XA

Host
Computer

Communication
Channel

Main Flash Memory
128 KBytes

Alternate Memory
for ISP Loader Code

System SRAM
8 KBytes

3/26

AN1177 - APPLICATION NOTE

a second alternate Flash memory to hold the IAP loader code and general data, and more SRAM. All three
of these memories can operate independently and concurrently; meaning the MCU can operate from one
memory while erasing/writing the other. This allows the MCU to continue normal operation during IAP,
which is crucial for some applications. This system also has programmable logic, expanded I/O, and de-
sign security. The two-chip solution is 100% programmable in the factory or in the field.

Figure 2. Embedded Flash System Capable of ISP (2 devices)

Note: 1. Other members of the PSD8XX family offer more Flash memory and more SRAM.
2. Only the PSD813F1 offers EEPROM, while the other members of the PSD8XX family offer secondary Flash memory.

By design, the IAP method described above requires MCU participation to exercise a communication
channel to implement a download to the main Flash memory. The PSD8XX also offers an alternative
method called In-System Programming (ISP) to program the PSD using a built-in IEEE 1149.1 JTAG in-
terface requiring no MCU participation. This means that a completely blank PSD can be soldered into
place and the entire chip can be programmed in-system in just a few seconds using ST’s FlashLINK™
JTAG cable and PSDsoft Express development software. No P51XA firmware needs to be written. Just
plug in the FlashLINK cable to your PC’s parallel port and begin programming memory, logic, and config-
uration. This is a powerful feature of the PSD8XX that allows immediate development of application code
in your lab, smart manufacturing techniques, and easy field updates.

The FlashLINK™ cable and PSDsoft Express software are available in a kit from the website www.st.com/
psd.

Figure 3 gives a block diagram of the PSD813F for your reference.

AI03327B

Embedded System

System
I/O

JTAG

P51XA

Host
Computer

Communication
Channel

128 KByte Flash
Optional 32 KByte
 EEPROM/Flash
Optional 2KByte SRAM
Programmable Logic
I/O

PSD813F1,2

AN1177 - APPLICATION NOTE

4/26

Figure 3. Top Level Block Diagram of PSD8xx

PHYSICAL CONNECTIONS

Connect your P51XA to the PSD8XX as shown in Figure 4. The same connections can be used for all of
the members of the PSD8XX family except the PSD835G2, which has more I/O. The JTAG programming
channel, SRAM with battery backup, LCD module, and MCU I/O connections are all optional.

AI03322B

JTAG Controller

CPLD
16

Output Macrocells
24

Input Macrocells

128 KByte
Flash

8 sectors

Decode
PLD

Optional 2 KByte
SRAM

Optional 32 KByte
EEPROM/Flash

4 sectors

Page
Reg

Power
Mngt

D
ev

ic
e

S
ec

ur
ity

M
C

U
C

on
tr

ol
M

C
U

A
dd

re
ss

 /
D

at
a

P
LD

 B
us

I/O
 B

us

I/O
 P

or
t A

I/O
 P

or
t B

I/O
 P

or
t C

I/O
 P

or
t D

MCU Address / Data / Control Bus
PSD813F

5/26

AN1177 - APPLICATION NOTE

Figure 4. Physical Connections, P51XA and PSD8XXFX

SIMPLE DESIGN EXAMPLE

The first design example outlines the steps required to get a P51XA system up and running quickly. A con-
nection diagram, memory map, and the necessary design file for the PSDsoft Express software develop-
ment environment are provided. A PSD813F2 was used for this example. However, other members of the
Flash PSD family may be used instead, with minor changes to the sample design file. See the selector
guide on the website for a comparison of the products.

Memory Map

For this simple design, we used a PSD813F2 with the following memories:

■ 128 KBytes main Flash memory, broken into eight 16 KByte segments denoted fsi (i = 1-8)

■ 32 KBytes boot Flash memory, broken into four 8 KByte segments denoted csbootj (j = 1-4). The
PSD813F1 has an EEPROM instead of Flash memory. Therefore, ees j (j = 1-4) would be used in place
of csboot j.

■ 2 KByte SRAM (rs0)

■ 256 byte PSD813F configuration register (csiop).

Note: the PSD memory segments are defined in the “Chip Select Equations” screen in PSDsoft Express.
We’ll use the boot memory to hold the ISP boot loader code, P51XA interrupt vectors, and common firm-
ware functions. For this example, we’ll execute from secondary Flash memory only and leave the main
Flash memory in Data Space. Let’s examine the sample memory map in Figure 5.

AI03329B

PSD8XXFX

ADIO0

ADIO8

ADIO7

ADIO6

ADIO5

ADIO4

ADIO3

ADIO2

ADIO1

ADIO15

ADIO14

ADIO13

ADIO12

ADIO11

ADIO9

ADIO10

CNTL0

PD0-ALE

CNTL1

RESET\

PA0

PA1

PC0/TMS

PB7

PB6

PB5

PB4

PB3

PB2

PB1

PB0

PA7

PA6

PA5

PA4

PA3

PA2

PC1/TCK

PC2/VSTBY

PC7

PC6/TDO

PC5/TDI

PC4/TERR

PC3/TSTAT

PD2-CSi\

PD1-CLKIN

CNTL2

30

39

37

36

35

34

33

32

31

45

44

43

42

41

40

49

47

46

9

10

50

48

8

12

11

52

51

20

19

17

14

13

6

5

4

3

2

7

21

22

23

24

25

27

28

29

18

Optional
JTAG port

TMS

TDO

TDI

TERR|

TSTAT

TCK

Optional 3.6 V
lithium battery or cap

WR\

ALE

P51XA

RST\

P51XA Assumptions:

* The logic levels on the EA\ and
 BUSW pins are low at reset.
* The Bus Configuration Register
 (BCR), bits BC2-BC0 are set to
 010 to enable an 8-bit data
 interface and a 20-bit address
 output.
* The Bus Timing Registers
 (BTRH/BTRL) are set up such
 that there are no timing conflicts
 between the PSD8XXFX and the
 P51XA.

Connections:

Philips P51XA MCU and
WSI Flash PSD8XXFX
PLCC Package.
Note: only the necessary
pins on the P51XA are
shown.

EA\

A8/D4

A7/D3

A6/D2

A5/D1

A4/ D0

A3

A2

A1

A15

A14

A13

A12/D7

A11/D7

A9/D5

A10/D6

PSEN\

A16

A17

A18

A19

BUSW

RD\

RESET\

Vcc

A0/WRH

AN1177 - APPLICATION NOTE

6/26

Figure 5. Memory Map, Simple P51XA/PSD813FX Design

Note the following about the sample memory map shown in Figure 5:

■ It is broken up into sixteen 64 KByte segments.

■ All areas, except the unmapped regions and the 80C51XA On-Chip RAM region, are resident on the
PSD.

■ It shows both Program Space and Data Space.

■ The 32 KBytes of the PSD813F boot memory is mapped to Program Space. There are several
references to “boot” memory in this document, but the “boot” memory is simply a secondary memory
that can be used as boot memory or can serve any other purpose.

■ The main Flash memory is mapped to Data Space so that the contents can be programmed.

■ The PSD Control Register and SRAM are in the bottom 64 KByte segment of Data Space.

Note that placing the main Flash memory and secondary memory into Program Space or Data Space is
accomplished with the PSD VM Register. PSDsoft Express is used to define the initial value of the VM
Register when the system powers up or is reset. This initial value is stored in the fusemap that gets pro-
grammed into the PSD. At runtime, the VM register can be changed by writing to it with the MCU. This is
illustrated in the enhanced design of Section 4.

The boot memory holds the following information:

■ P51XA reset vector and initialization routines

0:0000

F:FFFF

2:FFFF

F:FFFF

2:FFFF

0:6000

0:4000

0:1000

0:1900

0:8000

0:2000

0:0000

0:1800

1:0000

2:C000

1:4000

2:4000

2:8000

2:0000

1:8000

1:C000

AI03330B

Not to
Scale

Main Flash Memory FS7
16 KBytes FLASH

Not to
Scale

Not to
Scale

Boot
from
Here

Main Flash Memory FS6
16 KBytes FLASH

Main Flash Memory FS5
16 KBytes FLASH

Main Flash Memory FS4
16 KBytes FLASH

Main Flash Memory FS3
16 KBytes FLASH

Main Flash Memory FS2
16 KBytes FLASH

Main Flash Memory FS1
16 KBytes FLASH

Main Flash Memory FS0
16 KBytes FLASH

Unmapped
13 x 64 KBytes

Unmapped
13 x 64 KBytes

Unmapped
160 KBytes

Unmapped
57.75 KBytes

Unmapped
3 to 3.75 KBytes

PSD Control Register (CSIOP)
256 Bytes

Optional SRAM (RS0)
2 KBytes

80C51XA On-Chip RAM
256 Bytes to 1 KByte

Program Space Data Space

Optional Boot Flash/EEPROM (csboot0/ees0--8 Kbytes)

Optional Boot Flash/EEPROM (csboot1/ees1--8 Kbytes)

Optional Boot Flash/EEPROM (csboot2/ees2--8 Kbytes)

Optional Boot Flash/EEPROM (csboot3/ees3--8 Kbytes)

7/26

AN1177 - APPLICATION NOTE

■ P51XA interrupt vectors and service routines

■ I/O management.

Since Figure 5 is a sample memory map, you may wish to change it. To do so, simply change the chip
select equations within the Design Assistant in PSDsoft Express. For example, if you have a PSD813F
part that doesn’t contain the optional secondary memory, you will want to have the main Flash memory
located in Program Space. See Appendix A for a sample memory map for parts with no secondary boot
memory.

PSDsoft Express Design Entry

Highlights of design entry will be given here. Please refer to the PSDsoft Express User Manual for a thor-
ough coverage of all the features of PSDsoft Express. This section is meant to show you just the essentials
to get you going. Here are the steps:

Invoke PSDsoft Express and Open a New Project.

■ Start PSDsoft Express.

■ Create a new project.

■ Select your project folder and name the project (in this example, name the project “Easy51XA” in the
folder PSDsoft\my_project).

MCU and PSD Selection. When you click OK in the “New Project” window, the “MCU and PSD Selec-
tion” screen appears. When you see this screen, make the following selections:

■ Select an MCU manufacturer and part number. In this example, we’re using a Philips P51XAG3x.

■ For the Control Signals box, select /WR, /RD, /PSEN, Burst Mode

■ Select the PSD8XX series for the PSD Family.

■ Select a PSD813F2 and use the 52-pin PLCC package (J package).

■ Based on the above selections, the “Bus Width”, “Bus Mode”, and “ALE/AS Active Level” will be set
automatically.

■ Set the main Flash memory to “Data Space Only” and the secondary Flash memory to “Program Space
Only”.

This is what the screen should look like after you’ve made the selections:

AN1177 - APPLICATION NOTE

8/26

Now you have your project established based on a PSD813F2 and a P51XA. However, there are many
other MCU/MPUs you could have chosen in place of the P51XA and still have use of this document. Click
OK and the “Design Parameters” window will appear.

Design Parameters. Choose “Use Design Assistant” and click OK to be taken to the Pin Definitions
screen. Notice how all the pins functions on the left hand side of the diagram have been assigned for you
based on your MCU and PSD selection and configuration. To get an idea of how to add a pin function,
click on pc3 in the diagram, then “Dedicated JTAG – TSTAT” in the “Other” box and click the Add button.
Your screen should match the one below. Continue to add pin functions to match your design. When fin-
ished, click Next >> to be taken to the “Design Assistant” screen. Note: there are detailed instructions on
how to use this screen and other “Design Assistant” screens in the PSDsoft Express User Manual.

9/26

AN1177 - APPLICATION NOTE

Page Register Definition. In this example, the P51XA is assumed to be outputting 20 address bits, pro-
viding a one megabyte address space. As such, no page bits are required to extend the address space,
so there is nothing to do on this screen at this time except to move on. However, later, you will see how
the Page Register can be used for general logic inputs to the PLD. Click Next >> when finished.

Chip Select Equations. Use this screen to enter chip-select equations to match your memory map. The
entry for the PSD SRAM (rs0) is shown below.

AN1177 - APPLICATION NOTE

10/26

Use the following table to fill in the rest of the Chip Select equations:

Table 1.

Chip Select Segment Hexadecimal Start Address Hexadecimal End Address

csiop 01800 018FF

fs0 10000 13FFF

fs1 14000 17FFF

fs2 18000 1BFFF

fs3 1C000 1FFFF

fs4 20000 23FFF

fs5 24000 27FFF

fs6 28000 2BFFF

fs7 2C000 2FFFF

csboot0 00000 01FFF

csboot1 02000 03FFF

csboot2 04000 05FFF

csboot3 06000 07FFF

11/26

AN1177 - APPLICATION NOTE

I/O Logic and User Defined Node Equations. The “I/O Logic Equations” and “User Defined Node
Equations” screens are used to enter equations for the registered logic within the PSD. Since this docu-
ment focuses on issues related to ISP and IAP, registered logic equations are not covered. However, for
more information on entering registered logic equations, refer to the PSDsoft Express User Manual. Also,
see Application Note AN1356—Design Guide: PSDsoft Express, section 5.2 for a tutorial on implementing
logic in the CPLD.

Click Done and the software will check your design for errors. If you have any errors, go back and fix them.
Otherwise, you should now see the “Design Flow” window:

Click on Additional PSD Settings in the “Design Flow” window and a dialog box will appear.

Additional PSD Settings. There are three functions that can be accomplished in this dialog box:

1. Setting the security bit—blocks all access to the contents of the PSD’s memories by means of JTAG or
a conventional programmer. That is, once the security bit is set, no programmer can read or copy the
configuration or memory contents of the PSD. The only way to erase the security bit is to completely
erase the PSD.

2. Specify the IEEE 1149.1 JTAG user code—allows you to enter a 32-bit code, which can be used for
various functions. Click on the “JTAG/ISP” tab for more details

3. Set the internal memories’ sector protections—allows the individual memory sectors within the PSD to
be write protected to prevent accidental data loss. The MCU/MPU cannot change these settings at run-
time; only a device programmer can alter these settings.

Click OK and you will see the Design Flow again. Next, we need to fit the design to silicon.

Fitting the Design to Silicon. To fit the design to silicon, click the Fit Design to Silicon box in the De-
sign Flow. PSDsoft Express will compile and synthesize the design and create part of the program data

AN1177 - APPLICATION NOTE

12/26

file (.obj) that will later be programmed into the PSD813F2 silicon. When this process is complete, a report
will pop up that shows the resulting pin assignments PSD usage. This is the fitter report, which you can
use to document your design. Since you created a project from scratch, you might receive a fitter error. If
this is the case, you should check the PSDsoft Express User Manual for further instructions.

C Code Generation. You can take advantage of the provided low-level C code for accessing memory el-
ements within the PSD by clicking on the Generate C Code Specific to PSD box in the Design Flow win-
dow. To get the C functions and headers, specify the folder in which you want the ANSI C files to be
written. ANSI C code functions and headers are generated for you to paste into your P51XA C compiler
environment in the folder you specify. Simply tailor the code to meet your system needs. See the PSDsoft
Express User Manual for details on the C code generation feature.

Merge MCU Firmware with PSD. Now that the fitting process is complete, PSDsoft Express has created
a fuse pattern that reflects the PSD configuration and logic of your design. PSDsoft Express places this
fuse information into a file (the .obj file). However this fuse pattern does not yet contain the P51XA firm-
ware. The next step will accomplish this, producing an .obj file that contains the PSD configuration and the
P51XA firmware. This final .obj file is what gets programmed into the PSD. The same .obj file is appended
with MCU firmware in the next step below.

For this step, “Merge MCU Firmware with PSD”, you will input the firmware file(s) that contain absolute
addresses from your P51XA compiler/linker in Intel Hex format. The Merger will map these file(s) into the
memory segments of the PSD according to the chip select equations that you entered in the Design As-
sistant. This mapping process translates the absolute system addresses that P51XA uses into physical
internal PSD addresses that are used by a programmer to program the PSD. The address translation pro-
cess is transparent. All you need to do is enter the file(s) that were generated from your P51XA linker into
the appropriate boxes and PSDsoft Express does the rest.

Go to the design flow window and click the Merge MCU Firmware with PSD box and you should see this:

The far left column contains individual PSD memory segments. The next column shows the logic equa-
tions for selection of each memory segment (shown for reference only). In the middle are the address

13/26

AN1177 - APPLICATION NOTE

ranges that were specified in the “Chip Select Equations” screen to create the memory map. PSDsoft Ex-
press filled in these address fields for you. PSDsoft Express expects to find these absolute MCU address-
es within your P51XA linker file(s) when they are imported. On the right are boxes where you can type in
(or browse for) the name of the file(s) (including path) that indicates the location of your P51XA linker files.
Notice that you can select Motorola S-Record or Intel Hex Record for the input type. Leave the “Mapping
Mode” set to “Direct”.

Now slide the scroll bar down until you see csboot0 and csboot1.

Type in the name of the file from your P51XA linker that contains the firmware that will boot up your sys-
tem. For this example we called it boot.hex. This file can contain very simple P51XA code that configures
your system hardware and performs rudimentary tasks to check out your new hardware. In this example,
there are 32 KBytes available in secondary Flash memory segments csboot0 and csboot1, which is more
than enough for this simple boot and test code. After your new hardware is proven, you can add more code
to the boot area for advanced tasks, such as implementing a download to main Flash memory from a host
computer, as shown in the enhanced design of Section 4.

No file names are required for the main Flash memory regions (fs0-fs7) because we are only operating
out of boot Flash memory for now. Click OK, and the address translate process will produce the final .obj
file that you can use to program the PSD.

Programming the PSD. The .obj file can be programmed into the PSD in one of three ways:

The ST FlashLINK™ JTAG cable, which connects to the PC parallel port.

The ST PSDpro device programmer, which also connects to the PC parallel port.

Third-party programmers, such as Stag and Needhams. See the website at www.st.com/psd for a list of
compatible third-party programmers.

First we’ll show you how to use the FlashLINK™ JTAG cable to program the PSD.

Programming with FlashLINK™. Connect the FlashLINK™ cable to your PC’s parallel port. Click the
ST JTAG/ISP box in the Design Flow window. You will be prompted for the number of devices in the JTAG
chain on your circuit board. Make the appropriate selection and click OK. This document assumes only

AN1177 - APPLICATION NOTE

14/26

one device is in the JTAG chain. If you have more than one device, refer to the PSDsoft Express User
Manual. For single device JTAG chains, the window will look similar to the following one:

To use this window, ensure that the correct programming data file and PSD device appear in Step 1. For
Step 2, select the desired operation, the regions of the PSD that the operation affects, and the number of
JTAG pins (4 or 6) to use on the circuit board.

Before you perform the selected operation, click the Properties… button. This dialog box allows you to
do the following:

Set Port Pins: with this screen, you can set up the PSD’s I/O pins during JTAG operations. The default
(except for the JTAG pins) is Input, which is usually fine for most pins. (Note that the PSD will not respond
to any non-JTAG I/O.) However, sometimes it may be desirable to set a pin or pins to output during JTAG.
For example, if you have chip-select signal being generated from the PSD that selects a device that po-
tentially could drive signals on the JTAG lines (if you are multiplexing the pins), you would want that chip-
select to be inactive during the JTAG operation.

JTAG-ISP Attributes: this screen allows you to view the device name and Instruction Register length. This
information may be useful to other design programs.

User Code: basically, by clicking on the “User Code” tab, you are provided with a space to enter an IEEE
1149.1 User Code that will be compared to the value previously entered in the “Additional PSD Settings”
screen.

Once you are satisfied with your property settings, click OK to return to the “JTAG-ISP Operations” win-
dow. You can now perform the selected operation by clicking Execute.

Before you leave this screen, you may wish to save your JTAG configuration. This can be done in Step 3
by clicking on the Save button and specifying a file name. This file can be used next time by clicking the
Retrieve button.

Programming with PSDpro. Ensure that the PSDpro device programmer is connected to your PC’s par-
allel port. Click on the ST Conventional Programmers box in the Design Flow window. You will see this:

15/26

AN1177 - APPLICATION NOTE

If this is the first use of the PSDpro, click on the “Htest” icon to perform a test of the PSDpro and the PC
port. After testing, place a PSD813F2 into the socket of the PSDpro and click on the “Program” icon. (The
.obj file is automatically loaded when this process is invoked). The messaging of PSDsoft Express will in-
form you when programming is complete.

This window is also helpful even if you do not have a PSDpro programmer. You can use this window to
see where the Merge MCU Firmware utility of PSDsoft Express has placed the P51XA firmware within
physical memory of the PSD. For example, you can click on the secondary Flash memory icon in the tool
bar. Notice the P51XA reset vector that would be at absolute MCU addresses 0000h and 0002h, translates
to PSD secondary Flash memory physical addresses 20000h and 20002h, respectively. To see how all of
your P51XA absolute addresses translated into physical PSD memory addresses, click Report->Address
Translation. The start and stop addresses in the report are the absolute MCU system addresses that you
have specified. The addresses shown in square brackets are direct physical addresses used by a device
programmer to access the memory elements of the PSD in a linear fashion (a special device programming
mode that the MCU cannot access).

ENHANCED DESIGN EXAMPLE

This second design example builds upon the first to add enhanced features to this ISP/IAP capable sys-
tem. The physical connections between the P51XA and PSD813F2 do not change, but the memory map
and chip select equations do. The focus of this enhanced design is to show how the memories of the
PSD813F2 can be used concurrently. This means swapping the boot code out of Program Space after the
initial boot sequence has completed. The boot code can then be updated if desired.

Required Changes in the PSDsoft Express Design Entry

The steps to implement the second design in PSDsoft Express are almost identical to those in the first
design. In fact, you can repeat the steps outlined in Sections 3.2.1 to 3.2.3, except you should give your
new project a different name.

Change the Page Register Definition. For section 3.2.4, you will need to define a logic bit that will allow
the swapping of memory segments within the PSD during IAP. To do so, with the “Page Register Defini-
tion” tab clicked in the “Design Assistant” screen, make the following addition: for pgr7, click the “logic”
checkbox and type “swap” in the “Name of Logic Signal” column. This bit will be used in the chip select

AN1177 - APPLICATION NOTE

16/26

equations to implement memory swapping (as shown in the next subsection). This bit can be modified at
runtime by writing to its location in the Page Register within the CSIOP address space. See the PSD8XX
Family Data Sheet for details. When you have made the addition, your screen should look like this:

Modify the Chip Select Equations. The chip selects equations need to be modified (from what they
were in Section 3.2.5) to match the situational memory maps outlined in Figure 6 to Figure 9 in Section
4.2. That is, the memory map that is presented to the MCU will vary dynamically based on the settings of
the VM Register and pgr7 (“swap”) of the Page Register. In order to make the memory maps of Section
4.2 work, csboot0, csboot1, and fs7 need to be modified. Below, the modified csboot0 is shown as an ex-
ample.

17/26

AN1177 - APPLICATION NOTE

Continue to modify csboot1 and fs7 according to the following screen captures:

The steps outlined in Sections 3.2.6 to 3.2.9 can be repeated for the Enhanced Design Example at this
time. For Section 3.2.10, when mapping the P51XA firmware in the Address Translate utility of PSDsoft

AN1177 - APPLICATION NOTE

18/26

Express for this second design example, you still do not need to specify any Hex file for the PSD main
Flash memory area. You only need to specify the P51XA linker file(s) for the secondary Flash memory
area (as in the first simple design) because the P51XA will execute code from secondary Flash memory
and download to main Flash memory. See the next subsection for more details.

Memory Map

The boot sequence and memory swap is a four-step process, as shown in Figure 6 to Figure 9.

For more information on both the Page Register and VM Register, see the data sheets and the PSDsoft
Express User Manual.

Memory Map Configuration at Boot-Up. Figure 6 (next page) shows how the memory map looks at
system power-on or at system reset. The “swap” bit is one of the eight internal PSD page register bits,
whose value is zero by default. The “swap” bit is an example of how the page register bits can be imple-
mented for uses other than memory paging. The VM Register controls which space (Program or Data) the
PSD memories appear in and can be set prior to runtime using PSDsoft Express Configuration. The VM
register resides in the PSD and can be accessed at any time by the P51XA. (See the PSD8XX data
sheets.) Here’s what the P51XA does upon power-up or reset:

■ Boot from Flash memory boot csboot0 at address 0h

■ Perform a checksum of main Flash memory

■ Download main Flash memory from a host computer if needed and validate contents.

19/26

AN1177 - APPLICATION NOTE

Figure 6. Memory Map, Enhanced Design at Boot-Up/ISP

Memory Map Configuration After Moving the Main Flash. The next step is to move the main Flash
memory from Data Space to Program Space. To do so, while executing out of the boot Flash memory,
write 06h to the VM register. You will now have the memory map shown in Figure 7.

0:0000

F:FFFF

2:FFFF

F:FFFF

2:FFFF

0:6000

0:4000

0:1000

0:1900

0:8000

0:2000

0:0000

0:1800

1:0000

2:C000

1:4000

2:4000

2:8000

2:0000

1:8000

1:C000

AI03334

Not to
Scale

Main Flash Memory FS7
16 KBytes FLASH

Not to
Scale

Not to
Scale

Boot
from
Here

Main Flash Memory FS6
16 KBytes FLASH

Main Flash Memory FS5
16 KBytes FLASH

Main Flash Memory FS4
16 KBytes FLASH

Main Flash Memory FS3
16 KBytes FLASH

Main Flash Memory FS2
16 KBytes FLASH

Main Flash Memory FS1
16 KBytes FLASH

Main Flash Memory FS0
16 KBytes FLASH

Unmapped
13 x 64 KBytes

Unmapped
13 x 64 KBytes

Unmapped
160 KBytes

Unmapped
57.75 KBytes

Unmapped
3 to 3.75 KBytes

PSD Control Register (CSIOP)
256 Bytes

Optional SRAM (RS0)
2 KBytes

80C51XA On-Chip RAM
256 Bytes to 1 KByte

Program Space Data Space

swap = 0
VM Register = 12h

Optional Boot Flash/EEPROM (csboot0/ees0--8 Kbytes)

Optional Boot Flash/EEPROM (csboot1/ees1--8 Kbytes)

Optional Boot Flash/EEPROM (csboot2/ees2--8 Kbytes)

Optional Boot Flash/EEPROM (csboot3/ees3--8 Kbytes)

AN1177 - APPLICATION NOTE

20/26

Figure 7. Memory Map After Moving the Main Flash Memory to Program Space

Memory Map Configuration After Setting the swap bit. Next, we want to swap main and secondary
Flash memory and transfer execution to main Flash memory segment fs7. To do so, the “swap” bit must
be set to HI to re-map the Flash memory boot segments csboot0/csboot1 out of the MCU boot area and
replace it with main Flash memory segment fs7, as shown in Figure 8. So that no program continuity is
lost, the instruction that sets the “swap” bit is executed from csboot0 and the next contiguous instruction
must be in fs7. For example, if the instruction that executes the swap is at location 1000h in csboot0, then
fs7 must contain the next instruction to be executed at location 1002h.

0:0000

F:FFFF

2:FFFF

F:FFFF

2:FFFF

0:6000

0:4000

0:1000

0:1900

0:8000

0:2000

0:0000

0:1800

1:0000

2:C000

1:4000

2:4000

2:8000

2:0000

1:8000

1:C000

AI03335B

Not to
Scale

Main Flash Memory FS7
16 KBytes FLASH

Not to
Scale

Not to
Scale

Execute
from
Here

Main Flash Memory FS6
16 KBytes FLASH

Main Flash Memory FS5
16 KBytes FLASH

Main Flash Memory FS4
16 KBytes FLASH

Main Flash Memory FS3
16 KBytes FLASH

Main Flash Memory FS2
16 KBytes FLASH

Main Flash Memory FS1
16 KBytes FLASH

Main Flash Memory FS0
16 KBytes FLASH

Unmapped
13 x 64 KBytes

Unmapped
13 x 64 KBytes

Unmapped
185.75 KBytes

Unmapped
32 KBytes

Unmapped
3 to 3.75 KBytes

PSD Control Register (CSIOP)
256 Bytes

Optional SRAM (RS0)
2 KBytes

80C51XA On-Chip RAM
256 Bytes to 1 KByte

Program Space Data Space

swap = 0
VM Register = 06h

Optional Boot Flash/EEPROM (csboot0/ees0--8 Kbytes)

Optional Boot Flash/EEPROM (csboot1/ees1--8 Kbytes)

Optional Boot Flash/EEPROM (csboot2/ees2--8 Kbytes)

Optional Boot Flash/EEPROM (csboot3/ees3--8 Kbytes)

21/26

AN1177 - APPLICATION NOTE

Figure 8. Memory Map After Setting the SWAP bit

Memory Map Configuration After Moving the Boot Flash memory to Data Space. The final step is
to move the secondary Flash memory to Data Space so that it can be updated if desired. To move the
secondary Flash memory to Data Space, write 0Ch to the VM register. Once the VM register has been
written, you can program either half of the secondary Flash memory, depending on how the “unlock” bit is
set. Figure 9 shows the final state of the memory map.

0:0000

F:FFFF

2:FFFF

F:FFFF

2:FFFF

0:6000

0:4000

0:1000

0:1900

0:8000

2:E000

0:0000

0:1800

1:0000

2:C000

1:4000

2:4000

2:8000

2:0000

1:8000

1:C000

AI03336B

Not to
Scale

Main Flash Memory FS7
16 KBytes FLASH

Not to
Scale

Not to
Scale

Execute
from
Here

Main Flash Memory FS6
16 KBytes FLASH

Main Flash Memory FS5
16 KBytes FLASH

Main Flash Memory FS4
16 KBytes FLASH

Main Flash Memory FS3
16 KBytes FLASH

Main Flash Memory FS2
16 KBytes FLASH

Main Flash Memory FS1
16 KBytes FLASH

Main Flash Memory FS0
16 KBytes FLASH

Unmapped
13 x 64 KBytes

Unmapped
13 x 64 KBytes

Unmapped
185.75 KBytes

Unmapped
32 KBytes

Unmapped
3 to 3.75 KBytes

PSD Control Register (CSIOP)
256 Bytes

Optional SRAM (RS0)
2 KBytes

80C51XA On-Chip RAM
256 Bytes to 1 KByte

Program Space Data Space

swap = 0
VM Register = 06h

Optional Boot Flash/EEPROM (csboot0/ees0---8 Kbytes)

Optional Boot Flash/EEPROM (csboot1/ees1--8 Kbytes)

Optional Boot Flash/EEPROM (csboot2/ees2--8 Kbytes)

Optional Boot Flash/EEPROM (csboot3/ees3--8 Kbytes)

AN1177 - APPLICATION NOTE

22/26

Figure 9. Memory Map After Moving the Boot Flash Memory to Data Space

In this final configuration, the P51XA has available:

■ 16 KBytes main Flash memory in the boot area (00000h-03FFFh)

■ 112 KBytes main Flash memory in Program Space (10000h-2BFFFh)

■ 2 KBytes of SRAM in addition to the SRAM that resides on the P51XA

■ 16 KBytes of boot Flash memory for general data storage (04000h-07FFFh)

■ 16 KBytes of boot Flash memory for boot and IAP loader code (2C000h-2FFFFh).

Each time this P51XA system gets reset or goes through a power-on cycle, the PSD presents the memory
map of Figure 6 to the MCU, and the boot sequence is repeated.

CONCLUSION

These examples are just two of an endless number of ways to configure the Flash PSD for your system.
Concurrent memories with a built-in programmable decoder at the segment level offer excellent flexibility.
Also, as you have seen with the “swap” and “unlock” bits, the page register bits do not have to be used
just for paging through memory. The ability to expand your system does not require any physical connec-
tion changes, as everything is configured internal to the PSD. And finally, the JTAG channel can be used

0:0000

F:FFFF

2:FFFF

F:FFFF

2:FFFF

0:6000

0:4000

0:1000

0:1900

0:8000

2:E000

0:0000

0:1800

1:0000

2:C000

1:4000

2:4000

2:8000

2:0000

1:8000

1:C000

AI03337B

Not to
Scale

Main Flash Memory FS7
16 KBytes FLASH

Not to
Scale

Not to
Scale

Execute
from
Here

Main Flash Memory FS6
16 KBytes FLASH

Main Flash Memory FS5
16 KBytes FLASH

Main Flash Memory FS4
16 KBytes FLASH

Main Flash Memory FS3
16 KBytes FLASH

Main Flash Memory FS2
16 KBytes FLASH

Main Flash Memory FS1
16 KBytes FLASH

Main Flash Memory FS0
16 KBytes FLASH

Unmapped
13 x 64 KBytes

Unmapped
13 x 64 KBytes

Unmapped
144 KBytes

Unmapped
48 KBytes

Unmapped
3 to 3.75 KBytes

PSD Control Register (CSIOP)
256 Bytes

Optional SRAM (RS0)
2 KBytes

80C51XA On-Chip RAM
256 Bytes to 1 KByte

Program Space Data Space

swap = 0
VM Register = 0Ch

Unmapped
8.75 KBytes

2:C000

0:4000

Unmapped
16 KBytes Optional Boot Flash/EEPROM (csboot0/e es0--8 Kbytes)

Optional Boot Flash/EEPROM (csboot1/e es1--8 Kbytes)

Optional Boot Flash/EEPROM (csboot2/e es2--8 Kbytes)

Optional Boot Flash/EEPROM (csboot3/e es3--8 Kbytes)

23/26

AN1177 - APPLICATION NOTE

for ISP anytime, and anywhere, with no participation from the MCU. All of these features are crosschecked
under the PSDsoft Express development environment to minimize your effort to design a Flash memory
P51XA system capable of IAP.

REFERENCES

PSD8XX Family Data Sheets for detailed PSD8XX information

PSDsoft Express User Manual for details on how to use the design software

Application Note AN1153: JTAG ISP Information: Flash PSD for detailed use of the JTAG port

Application Note AN1171: Flash PSD CPLD Primer

APPENDIX A: CONNECTING TO A PSD813F WITH NO SECONDARY MEMORY

The following is a sample memory map for connecting to a PSD813F with no secondary memory (such as
the PSD813F3 or PSD813F5). This memory map assumes you have downloaded the main Flash memory
with the FlashLINK cable or you have booted from a separate PROM and have downloaded the Flash
memory using the MCU. In either case, you must change your design to account for the different segment
locations.

AN1177 - APPLICATION NOTE

24/26

Figure 10. Memory Map for a PSD813F Device (with No Secondary Boot Memory)

0:0000

F:FFFF

2:FFFF

F:FFFF

2:FFFF

0:1000

0:1900

0:0000

0:1800

1:C000

0:4000

1:4000

1:8000

1:0000

0:8000

0:C000

AI03338B

Not to
Scale

Main Flash Memory FS7
16 KBytes FLASH

Not to
Scale

Not to
Scale

Main Flash Memory FS6
16 KBytes FLASH

Main Flash Memory FS5
16 KBytes FLASH

Main Flash Memory FS4
16 KBytes FLASH

Main Flash Memory FS3
16 KBytes FLASH

Main Flash Memory FS2
16 KBytes FLASH

Main Flash Memory FS1
16 KBytes FLASH

Main Flash Memory FS0
16 KBytes FLASH

Unmapped
13 x 64 KBytes

Unmapped
13 x 64 KBytes

Unmapped
169.75 KBytes

Unmapped
64 KBytes

Unmapped
3 to 3.75 KBytes

PSD Control Register (CSIOP)
256 Bytes

Optional SRAM (RS0)
2 KBytes

80C51XA On-Chip RAM
256 Bytes to 1 KByte

Program Space Data Space

2:0000

25/26

AN1177 - APPLICATION NOTE

Table 2. Document Revision History

Date Rev. Description of Revision

Nov-2000 2.0 Document written in the WSI format

30-Oct-2001 3.0 Document converted to the ST format

AN1177 - APPLICATION NOTE

26/26

For current information on PSD products, please consult our pages on the world wide web:
www.st.com/psd

If you have any questions or suggestions concerning the matters raised in this document, please send
them to the following electronic mail addresses:

apps.psd@st.com (for application support)

ask.memory@st.com (for general enquiries)

Please remember to include your name, company, location, telephone number and fax number.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics

All other names are the property of their respective owners

© 2001 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies Austalia - Brazil - Canada - China - Finland - France - Germany - Hong Kong -

India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

www.st.com

