

LSJ108 N-CHANNEL JFET

Linear Systems replaces discontinued Siliconix J108

This n-channel JFET is optimised for low noise high performance switching. The part is particularly suitable for use in low noise audio amplifiers. The TO-92 package is well suited for cost sensitive applications and mass production.

(See Packaging Information).

LSJ108 Benefits:

- Low On Resistance
- Low insertion loss
- Low Noise

LSJ108 Applications:

- Analog Switches
- Commutators
- Choppers

FEATURES					
DIRECT REPLACEMENT FOR SILICONIX J108					
LOW ON RESISTANCE	r _{DS(on)} ≤ 8Ω				
FAST SWITCHING	t _(on) ≤ 4ns				
ABSOLUTE MAXIMUM RATINGS @ 25°C (unless otherwise noted)					
Maximum Temperatures					
Storage Temperature	-55°C to +150°C				
Operating Junction Temperature	-55°C to +150°C				
Maximum Power Dissipation					
Continuous Power Dissipation	350mW				
MAXIMUM CURRENT					
Gate Current (Note 1)	50mA				
MAXIMUM VOLTAGES					
Gate to Drain Voltage	V _{GDS} = -25V				
Gate to Source Voltage	V _{GSS} = -25V				

LSJ108 ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTIC	MIN	TYP.	MAX	UNITS	CONDITIONS
BV_GSS	Gate to Source Breakdown Voltage	-25				$I_{G} = 1\mu A$, $V_{DS} = 0V$
V _{GS(off)}	Gate to Source Cutoff Voltage	-3		-10		$V_{DS} = 5V, I_{D} = 1\mu A$
$V_{GS(F)}$	Gate to Source Forward Voltage	-	0.7		V	$I_G = 1mA$, $V_{DS} = 0V$
I _{DSS}	Drain to Source Saturation Current (Note 2)	80			mA	$V_{DS} = 15V, V_{GS} = 0V$
I _{GSS}	Gate Reverse Current	-	-0.01	-3		$V_{GS} = -15V, \ V_{DS} = 0V$
I _G	Gate Operating Current		-0.01		nA	$V_{DG} = 10V, I_D = 10mA$
I _{D(off)}	Drain Cutoff Current		0.02	3		$V_{DS} = 5V, V_{GS} = -10V$
r _{DS(on)}	Drain to Source On Resistance	-		8	Ω	$V_{GS} = 0V, \ V_{DS} \le 0.1V$

LSJ108 DYNAMIC ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

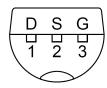
200 200 Ditta Mile 2220 Mile 12 Chill Mile 12 Chill Mile 200 Chill Mile 10 Court						
SYMBOL	CHAR <mark>A</mark> CTE <mark>R</mark> ISTIC	MIN	TYP.	MAX	UNITS	CONDITIONS
g _{fs}	Forward Transconductance		17		mS	$V_{DS} = 5V$, $I_{D} = 10mA$, $f = 1kHz$
g os	Output Conductance		0.6			
r _{DS(on)}	Drain to Source On Resistance			8	Ω	$V_{GS} = 0V$, $I_0 = 0A$, $f = 1kHz$
C _{iss}	Input Capacitance		60	85		$V_{DS} = 0V, V_{GS} = 0V, f = 1MHz$
C_{rss}	Reverse Transfer Capacitance		11	15	pF	$V_{DS} = 0V, V_{GS} = -10V, f = 1MHz$
e _n	Equivalent Noise Voltage		3.5		nV/√Hz	$V_{DS} = 5V$, $I_{D} = 10mA$, $f = 1kHz$

LSJ108 SWITCHING CHARACTERISTICS @ 25°C (unless otherwise noted)

=======================================							
SYMBOL	CHARACTERISTIC		UNITS	CONDITIONS			
t _{d(on)}	Turn On Time	3		V _{DD} = 1.5V			
t _r	Turn On Rise Time	1	nc	ns	$V_{GS}(H) = 0V$		
t _{d(off)}	Turn Off Time	4	113	See Switching Circuit			
t _f	Turn Off Fall Time	18		J The state of the			

Note 1 - Absolute maximum ratings are limiting values above which LSJ108 serviceability may be impaired. Note 2 – Pulse test: PW \leq 300 μ s, Duty Cycle \leq 3%

LSJ108 SWITCHING CIRCUIT PARAMETERS

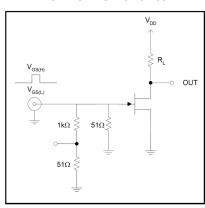

$V_{GS(L)}$	-12V
R_L	150Ω
I _{D(on)}	10mA

Available Packages:

LSJ108 in TO-92 LSJ108 in bare die.

Please contact Micross for full package and die dimensions

TO-92 (Bottom View)


Micross Components Europe

Tel: +44 1603 788967

Email: chipcomponents@micross.com
Web: http://www.micross.com/distribution

SWITCHING TEST CIRCUIT

