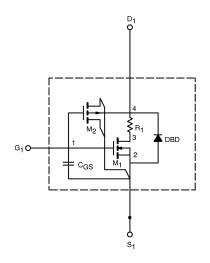
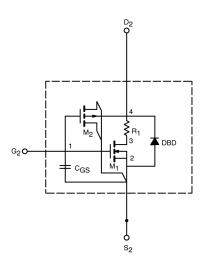


Dual N-Channel 30-V (D-S) MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics


DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model schematic is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-to-5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

 Document Number: 70539
 www.vishay.com

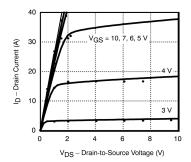
 05-Nov-99
 1

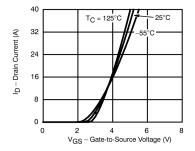
SPICE Device Model Si9936DY

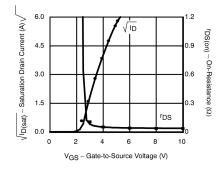
Vishay Siliconix

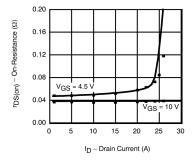
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)				
Parameter	Symbol	Test Condition	Typical	Unit
Static				
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	1.77	V
On-State Drain Current ^a	I _{D(on)}	V _{DS} = 5 V, V _{GS} = 10 V	120	Α
Drain-Source On-State Resistance ^a	_	V_{GS} = 10 V, I_{D} = 5.0 A	0.038	Ω
	r _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D = 3.9 \text{ A}$	0.049	
Forward Transconductance ^a	g _{fs}	$V_{DS} = 15 \text{ V}, I_{D} = 5 \text{ A}$	11	S
Diode Forward Voltage ^a	V_{SD}	$I_S = 1.7 \text{ A}, V_{GS} = 0 \text{ V}$	0.72	V
Dynamic ^b				
Total Gate Charge ^b	Q_g	V_{DS} = 15 V, V_{GS} = 10 V, I_{D} = 5 A	13	nC
Gate-Source Charge ^b	Q _{gs}		1.9	
Gate-Drain Charge ^b	Q_{gd}		3	
Turn-On Delay Time ^b	t _{d(on)}	$V_{DD} = 15 \text{ V}, R_L = 15 \Omega$ $I_D \cong 1 \text{ A}, V_{GEN} = 10 \text{ V}, R_G = 6 \Omega$ $I_F = 1.7 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	8	ns
Rise Time ^b	t _r		10	
Turn-Off Delay Time ^b	t _{d(off)}		24	
Fall Time ^b	t _f		37	
Source-Drain Reverse Recovery Time	t _{rr}		62	

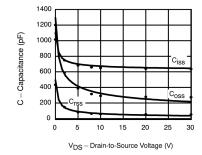
www.vishay.com Document Number: 70539

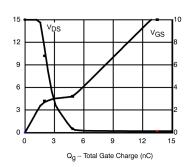

Notes a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.






Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.

Document Number: 70539 www.vishay.com 05-Nov-99