

SEMITOP® 3

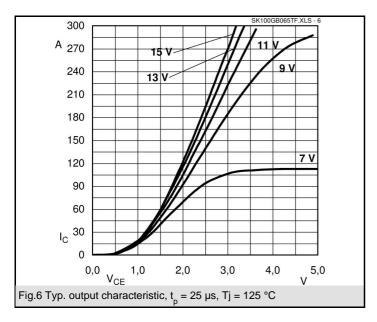
IGBT Module

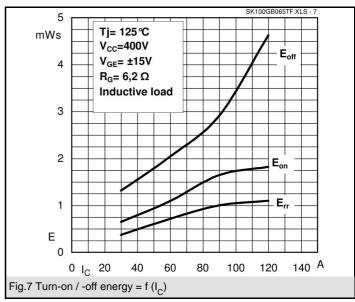
SK101GB065TF

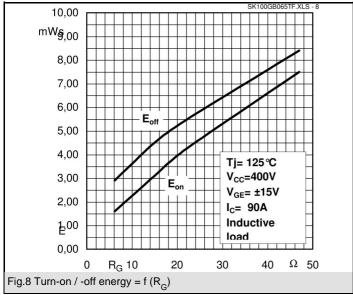
Target Data

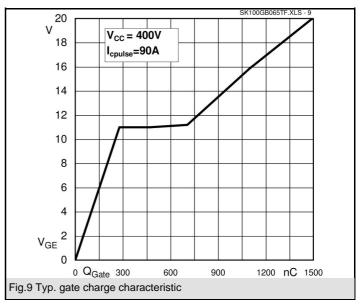
Features

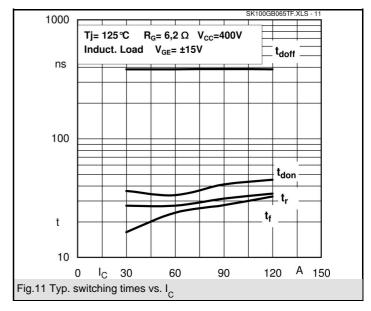
- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonding aluminium oxide ceramic (DBC)
- · High short circuit capability
- Low tail current with low temperature dependence
- Hyperfast diodes
- Integrated NTC temperature sensor

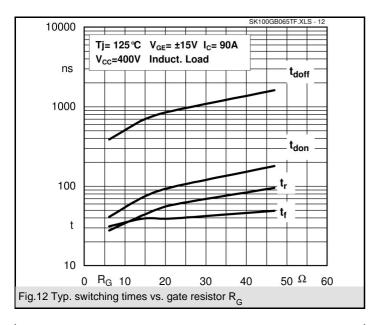

Typical Applications

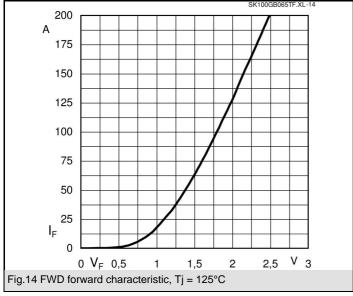

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS
- 1) $V_{CE,sat}$, V_F = chip level value

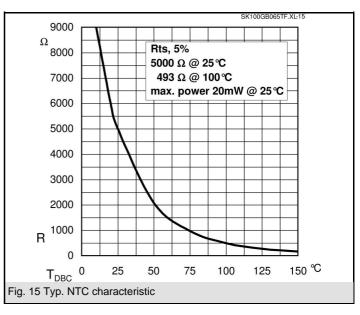

Absolute	Maximum Ratings	T _s = 25 °C, unless otherwise	T _s = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units					
IGBT								
V_{CES}		600	V					
V_{GES}		± 20	V					
I _C	$T_s = 25 (80) ^{\circ}C;$	160 (100)	Α					
I _{CM}	$t_p < 1 \text{ ms; } T_s = 25 (80) \text{ °C;}$	320 (200)	Α					
T _j	·	- 40 + 150	°C					
Inverse/Freewheeling Diode								
I _F	$T_s = 25 (80) ^{\circ}C;$	45 (30)	Α					
$I_{FM} = -I_{CM}$	$t_p < 1 \text{ ms; } T_s = 25 (80) \text{ °C;}$	90 (60)	Α					
T _j		- 40 + 150	°C					
T _{stg}		- 40 + 125	°C					
T _{sol}	Terminals, 10 s	260	°C					
V _{isol}	AC 50 Hz, r.m.s. 1 min. / 1 s	2500 / 3000	V					

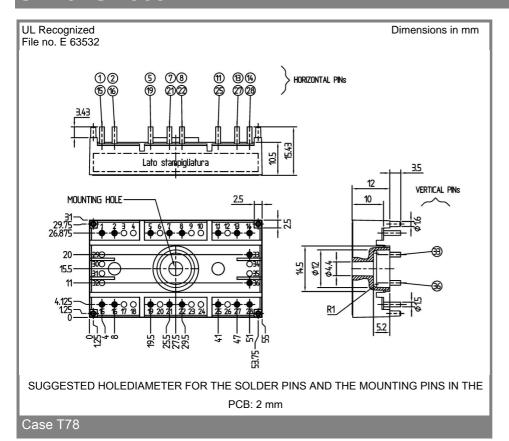

Characteristics		T _s = 25 °C, unless otherwise specified					
Symbol	Conditions	min.	typ.	max.	Units		
IGBT					•		
V _{CE(sat)} V _{GE(th)} C _{ies} R _{th(j-s)}	$I_C = 150 \text{ A}, T_j = 25 (125) ^{\circ}\text{C}$ $V_{CE} = V_{GE}; I_C = 0,003 \text{ A}$ $V_{CE} = 25 \text{ V}; V_{GE} = 0 \text{ V}; 1 \text{ MHz}$ per IGBT	3	2 (2,2) 4 8	2,5 (2,7) 5 0,35	V V nF K/W		
	per module				IN/VV		
$t_{d(on)} \ t_r \ t_{d(off)} \ t_f$	under following conditions: V_{CC} = 400 V , V_{GE} = ± 15 V I_{C} = 90 A, T_{j} = 125 °C R_{Gon} = R_{Goff} = 6,2 Ω		40 30 390 28		ns ns ns		
E _{on} + E _{off}	Inductive load		4,5		mJ		
Inverse/Freewheeling Diode							
$V_F = V_{EC}$ $V_{(TO)}$ r_T $R_{th(j-s)}$	I _F = 30 A; T _j = 25 (125) °C T _j = 150 °C T _j = 150 () °C		1,1 0,85 12	1,6 (1,2)	V V mΩ K/W		
I _{RRM} Q _{rr} E _{off}	under following conditions: $I_F = 30 \text{ A}; V_R = 400 \text{ V}$ $dI_F/dt = 500 \text{ A/}\mu\text{s}$ $V_{GE} = 0 \text{ V}; T_j = 125 ^{\circ}\text{C}$		25 1 1		Α μC mJ		
Mechanical data							
M1	mounting torque	2,25		2,5	Nm		
w			30		g		
Case	SEMITOP® 3		T 72				

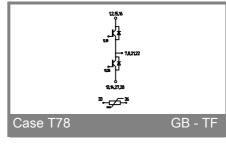












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.