Document Title

512K x8 bit Super Low Power and Low Voltage Full CMOS Static RAM

Revision History

<u>Revision No.</u>	History	Draft Date	<u>Remark</u>
0.0	Initial draft	March 16, 2000	Preliminary
1.0	Finalized - Change for tWHZ: 25 to 20ns for 70ns product - Change for tDW: 20 to 25ns for 55ns product 25 to 30ns for 70ns product	April 24, 2000	Final

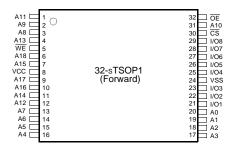
The attached datasheets are provided by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications and products. SAMSUNG Electronics will answer to your questions about device. If you have any questions, please contact the SAMSUNG branch offices.

512K x 8 bit Super Low Power and Low Voltage Full CMOS Static RAM

FEATURES

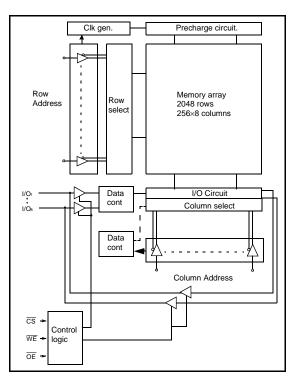
- Process Technology: Full CMOS
- Organization: 512K x8 bit
- Power Supply Voltage: 2.7~3.3V
- Low Data Retention Voltage: 1.5V(Min)
- Three state output status and TTL Compatible
- Package Type: 32-TSOP1-0813.4F

PRODUCT FAMILY


GENERAL DESCRIPTION

The K6F4008U1D families are fabricated by SAMSUNG's advanced full CMOS process technology. The families support small package type for user flexibility of system design. The families also supports low data retention voltage for battery back-up operation with low data retention current.

Γ					Power Di	ssipation		
	Product Family	Operating Temperature	Vcc Range	Speed	Standby (Isв1, Typ.)	Operating (Icc1, Max)	PKG Type	
	K6F4008U1D-F	Industrial(-40~85°C)	2.7~3.3V	551)/70ns	0.5μΑ	3mA	32-TSOP1-0813.4F	


1. The parameter is measured with 30pF test load.

PIN DESCRIPTION

Name	Function	Name	Function
CS	Chip Select Input	Vcc	Power
WE	Write Enable Input	Vss	Ground
OE	Output Enable Input	I/O1~I/O8	Data Inputs/Outputs
A0~A18	Address Inputs		

FUNCTIONAL BLOCK DIAGRAM

SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.

PRODUCT LIST

Industrial Temperature Products(-40~85°C)					
Part Name Function					
K6F4008U1D-YF55	32-sTSOP1-F, 55ns, 3.0V				
K6F4008U1D-YF70	32-sTSOP1-F, 70ns, 3.0V				

FUNCTIONAL DESCRIPTION

cs	OE	WE	I/O	Mode	Power
Н	X ¹⁾	X ¹⁾	High-Z	Deselected	Standby
L	Н	Н	High-Z	Output Disabled	Active
L	L	Н	Dout	Read	Active
L	X ¹⁾	L	Din	Write	Active

1. X means don't care (Must be in low or high state)

ABSOLUTE MAXIMUM RATINGS¹⁾

ltem	Symbol	Ratings	Unit
Voltage on any pin relative to Vss	Vin,Vout	-0.2 to Vcc+0.5V	V
Voltage on Vcc supply relative to Vss	Vcc	-0.2 to 4.0V	V
Power Dissipation	PD	1.0	W
Storage temperature	Тѕтс	-65 to 150	°C
Operating Temperature	TA	-40 to 85	°C

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS¹⁾

Item	Symbol	Min	Тур	Max	Unit
Supply voltage	Vcc	2.7	3.0	3.3	V
Ground	Vss	0	0	0	V
Input high voltage	Vін	2.2	-	Vcc+0.32)	V
Input low voltage	VIL	-0.2 ³⁾	-	0.6	V

Note:

1. TA=-40 to 85°C, otherwise specified.

Overshoot: Vcc+2.0V in case of pulse width ≤20ns.
Undershoot: -2.0V in case of pulse width ≤20ns.
Overshoot and undershoot are sampled, not 100% tested.

CAPACITANCE¹⁾ (f=1MHz, TA=25°C)

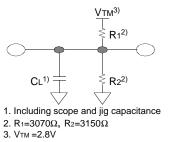
Item	Symbol	Test Condition	Min	Max	Unit
Input capacitance	CIN	VIN=0V	-	8	pF
Input/Output capacitance	Сю	VIO=0V	-	10	pF

1. Capacitance is sampled, not 100% tested.

DC AND OPERATING CHARACTERISTICS

Item	Symbol	Test Conditions	Min	Тур	Max	Unit
Input leakage current	ILI	VIN=Vss to Vcc	-1	-	1	μA
Output leakage current	Ilo	\overline{CS} =VIH, \overline{OE} =VIH or \overline{WE} =VIL, VIO=Vss to Vcc	-1	-	1	μA
Operating power supply current	Icc	IIO=0mA, \overline{CS} =VIL, \overline{WE} =VIH, VIN=VIL or VIH	-	-	2	mA
Average operating current	ICC1	Cycle time=1µs, 100%duty, Iio=0mA, CS≤0.2V, Viii≤0.2V or Viii≥Vcc-0.2V	-	-	3	mA
Average operating current	ICC2	Cycle time=Min, Iю=0mA, 100% duty, CS=Vi∟, VIN=Vi∟ or Viн	-	-	30	mA
Output low voltage	Vol	IOL = 2.1mA	-	-	0.4	V
Output high voltage	Vон	Іон = -1.0mA	2.4	-	-	V
Standby Current(TTL)	lsв	 CS=Vін, Other inputs=Vі∟or Vін	-	-	0.3	mA
Standby Current (CMOS)	ISB1	CS≥Vcc-0.2V, Other input =0~Vcc	-	0.5	12 ¹⁾	μA

1. Super low power product=5µA with special handling.



K6F4008U1D Family

AC OPERATING CONDITIONS

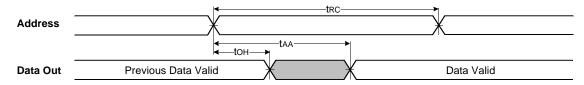
TEST CONDITIONS (Test Load and Test Input/Output Reference)

Input pulse level: 0.4 to 2.2V Input rising and falling time: 5ns Input and output reference voltage: 1.5V Output load (See right): CL= 100pF+1TTL CL=30pF+1TTL

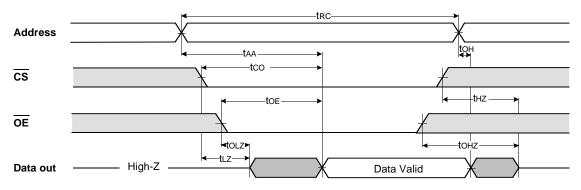
AC CHARACTERISTICS (Vcc=2.7~3.3V, Industrial product:TA=-40 to 85°C)

	Parameter List	Symbol	55	55ns		70ns	
			Min	Max	Min	Max	-
	Read Cycle Time	trc	55	-	70	-	ns
	Address Access Time	taa	-	55	-	70	ns
	Chip Select to Output	tco	-	55	-	70	ns
	Output Enable to Valid Output	tOE	-	25	-	35	ns
Read	Chip Select to Low-Z Output	tLZ	10	-	10	-	ns
	Output Enable to Low-Z Output	tolz	5	-	5	-	ns
	Chip Disable to High-Z Output	tHZ	0	20	0	25	ns
	Output Disable to High-Z Output	tohz	0	20	0	25	ns
	Output Hold from Address Change	tон	10	-	10	-	ns
	Write Cycle Time	twc	55	-	70	-	ns
	Chip Select to End of Write	tcw	45	-	60	-	ns
	Address Set-up Time	tas	0	-	0	-	ns
	Address Valid to End of Write	taw	45	-	60	-	ns
Write	Write Pulse Width	tWP	40	-	50	-	ns
wille	Write Recovery Time	twr	0	-	0	-	ns
	Write to Output High-Z	twнz	0	20	0	20	ns
	Data to Write Time Overlap	tDW	25	-	30	-	ns
	Data Hold from Write Time	tDH	0	-	0	-	ns
	End Write to Output Low-Z	tow	5	-	5	-	ns

DATA RETENTION CHARACTERISTICS


Item	Symbol	Test Condition	Min	Тур	Max	Unit
Vcc for data retention	VDR	<u>CS</u> ≥Vcc-0.2V	1.5	-	3.3	V
Data retention current	IDR	Vcc=1.5V, CS≥Vcc-0.2V	-	0.5	3 ¹⁾	μΑ
Data retention set-up time	tSDR	See data retention waveform	0	-	-	20
Recovery time	tRDR	See data retention wavelonn	tRC	-	-	ns

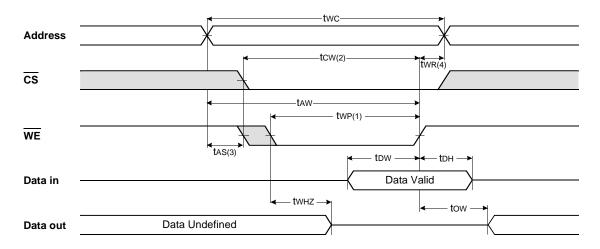
1. Super low power product=2µA with special handling.



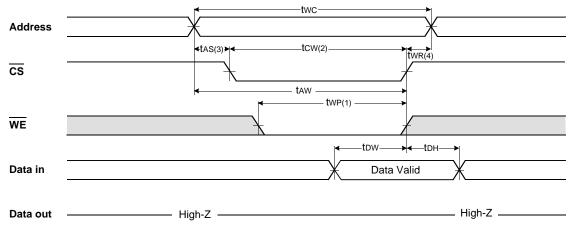
TIMMING DIAGRAMS

TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled, CS=OE=VIL, WE=VIH)

TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH)


NOTES (READ CYCLE)

1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.


2. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device interconnection.

TIMING WAVEFORM OF WRITE CYCLE(1) (WE Controlled)

TIMING WAVEFORM OF WRITE CYCLE(2) (CS Controlled)

NOTES (WRITE CYCLE)

1. A write occurs during the overlap of a low \overline{CS} and a low \overline{WE} . A write begins at the latest transition among \overline{CS} going Low and \overline{WE} going low: A write end at the earliest transition among \overline{CS} going high and \overline{WE} going high, twp is measured from the begining of write to the end of write.

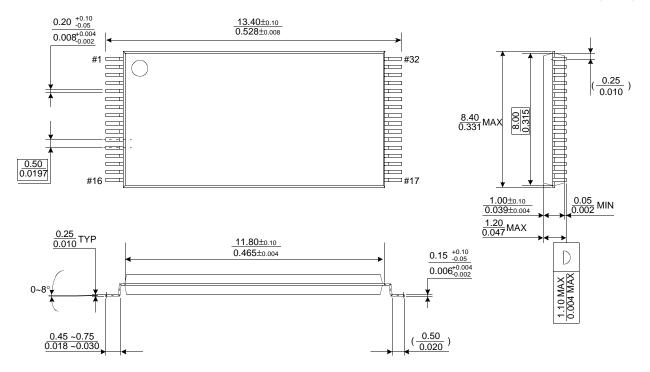
2. tcw is measured from the \overline{CS} going low to end of write.

3. tAS is measured from the address valid to the beginning of write.

4. two is measured from the end of write to the address change. two applied in case a write ends as $\overline{\text{CS}}$ or $\overline{\text{WE}}$ going high.

DATA RETENTION WAVE FORM

CS controlled



CMOS SRAM

32 PIN SMALLER THIN SMALL OUTLINE PACKAGE TYPE I (0813.4F)

Unit: millimeters(inches)

