N-CHANNEL 100V-0.12 Ω-12A TO-252 LOW THRESHOLD POWER MOS TRANSISTOR

TYPE	V $_{\text {DSS }}$	$\mathbf{R}_{\text {DS(on) }}$	ID $^{(120 \mathrm{~V}}$
STD12N10L	100.15Ω	12 A	

- TYPICAL RDS(on) $=0.12 \Omega$
- AVALANCHE RUGGED TECHNOLOGY
- 100\% AVALANCHE TESTED
- HIGH CURRENT CAPABILITY
- $175{ }^{\circ} \mathrm{C}$ OPERATING TEMPERATURE
- LOW THRESHOLD DRIVE
- FOR THROUGH-HOLE VERSION CONTACT SALES OFFICE

APPLICATIONS

- HIGH CURRENT, HIGH SPEED SWITCHING
- SOLENOID AND RELAY DRIVERS
- MOTOR CONTROL, AUDIO AMPLIFIERS
- DC-DC \& DC-AC CONVERTERS
- AUTOMOTIVE ENVIRONMENT(INJECTION, ABS, AIR-BG, LAMPDRIVERS, Etc.)

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DS}	Drain-source Voltage $\left(\mathrm{V}_{\mathrm{GS}}=0\right)$	100	V
$\mathrm{~V}_{\mathrm{DGR}}$	Drain- gate Voltage $\left(\mathrm{R}_{\mathrm{GS}}=20 \mathrm{k} \Omega\right)$	100	V
$\mathrm{~V}_{\mathrm{GS}}$	Gate-source Voltage	± 15	V
I_{D}	Drain Current (continuous) at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	12	A
I_{D}	Drain Current (continuous) at $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	8	A
$\mathrm{I}_{\mathrm{DM}}(\bullet)$	Drain Current (pulsed)	48	A
$\mathrm{P}_{\text {tot }}$	Total Dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	50	W
	Derating Factor	0.33	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to 175	${ }^{\circ} \mathrm{C}$
T_{j}	Max. Operating Junction Temperature	175	${ }^{\circ} \mathrm{C}$

(•) Pulse width limited by safe operating area

THERMAL DATA

$R_{\text {thj-case }}$	Thermal Resistance Junction-case	Max	3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {thj-amb }}$	Thermal Resistance Junction-ambient	Max	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {thc-sink }}$	Thermal Resistance Case-sink	Typ	1.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
T_{1}	Maximum Lead Temperature For Soldering Purpose		275	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$ unless otherwise specified)
OFF

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {(BR) } \mathrm{DSS}}$	Drain-source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A} \quad \mathrm{~V}_{\mathrm{GS}}$		100			V
Idss	Zero Gate Voltage Drain Current ($\mathrm{V}_{\mathrm{GS}}=0$)	$\mathrm{V}_{\mathrm{DS}}=$ Max Rating $V_{D S}=$ Max Rating	$\mathrm{T}_{\mathrm{c}}=125^{\circ} \mathrm{C}$			$\begin{gathered} \hline 1 \\ 10 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
IGss	Gate-body Leakage Current (VD $=0$)	$V_{G S}= \pm 15 \mathrm{~V}$				± 100	nA

ON (*)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate Threshold Voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}} \quad \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	1	1.6	2.5	V
$\mathrm{R}_{\mathrm{DS}(o n)}$	Static Drain-source On	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} \quad \mathrm{I}_{\mathrm{D}}=6 \mathrm{~A}$		0.12	0.15	Ω
	Resistance	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V} \quad \mathrm{I}_{\mathrm{D}}=6 \mathrm{~A}$		0.17	0.2	Ω
$\mathrm{I}_{\mathrm{D}(\text { on })}$	On State Drain Current	$\mathrm{V}_{\mathrm{DS}}>\mathrm{I}_{\mathrm{D}(\text { on })} \times \mathrm{R}_{\mathrm{DS}(o n) \max }$ 	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$			

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{g}_{\mathrm{fs}}(*)$	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}>\mathrm{I}_{\mathrm{D}(o n)} \times \mathrm{R}_{\mathrm{DS}(o n) \max } \quad \mathrm{I}_{\mathrm{D}}=6 \mathrm{~A}$	6.5	10		S
$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V} \quad \mathrm{f}=1 \mathrm{MHz} \quad \mathrm{V}_{\mathrm{GS}}=0$		800		pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance			150	pF	
$\mathrm{C}_{\text {rss }}$				50	pF	
	Reverse Transfer					
Capacitance						

ELECTRICAL CHARACTERISTICS (continued)
SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\overline{\mathrm{t}_{\mathrm{d}(\mathrm{on})}} \begin{gathered} \mathrm{t}_{\mathrm{r}} \end{gathered}$	Turn-on Delay Time Rise Time	$\begin{array}{\|lr} \hline \mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V} & \mathrm{I}_{\mathrm{D}}=6 \mathrm{~A} \\ \mathrm{R}_{\mathrm{G}}=4.7 \Omega & \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V} \\ \text { (Resistive Load, see fig. 3) } & \\ \hline \end{array}$		$\begin{aligned} & 15 \\ & 40 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{gathered} Q_{g} \\ Q_{g s} \\ Q_{g d} \end{gathered}$	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$\mathrm{V}_{\mathrm{DD}}=80 \mathrm{~V} \mathrm{I}_{\mathrm{D}}=12 \mathrm{~A} \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V}$		$\begin{gathered} 20 \\ 6 \\ 10 \end{gathered}$	30	$\begin{aligned} & \mathrm{nC} \\ & \mathrm{nC} \\ & \mathrm{nC} \end{aligned}$

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{tr}_{\text {(Voff) }}$	Off-voltage Rise Time	$\mathrm{V}_{\mathrm{DD}}=80 \mathrm{~V} \quad \mathrm{I}_{\mathrm{D}}=12 \mathrm{~A}$		12		ns
t_{f}	Fall Time	$\mathrm{R}_{\mathrm{G}}=4.7 \Omega \quad \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V}$		12		ns
t_{c}	Cross-over Time	(Inductive Load, see fig. 5)		25		ns

SOURCE DRAIN DIODE

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuits For Resistive Load

Fig. 2: Unclamped Inductive Waveform

Fig. 4: Gate Charge test Circuit

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

TO-252 (DPAK) MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	2.2		2.4	0.086		0.094
A1	0.9		1.1	0.035		0.043
A2	0.03		0.23	0.001		0.009
B	0.64		0.9	0.025		0.035
B2	5.2		5.4	0.204		0.212
C	0.45		0.6	0.017		0.023
C2	0.48		0.6	0.019		0.023
D	6		6.2	0.236		0.244
E	6.4		4.6	0.252		0.260
G	4.4		10.1	0.173		0.181
H	9.35					0.397
L2						
L4	0.6			0.023		0.031

STD12N10L

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics
© 1999 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com

