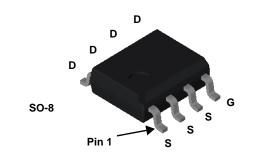
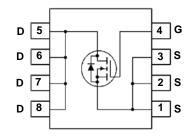


FDS86240 N-Channel PowerTrench[®] MOSFET 150 V, 7.5 A, 19.8 m Ω

Features

- Max $r_{DS(on)}$ = 19.8 m Ω at V_{GS} = 10 V, I_D = 7.5 A
- Max $r_{DS(on)} = 26 \text{ m}\Omega \text{ at } V_{GS} = 6 \text{ V}, I_D = 6.4 \text{ A}$
- High performance trench technology for extremely low r_{DS(on)}
- High power and current handling capability in a widely used surface mount package
- 100% UIL Tested
- RoHS Compliant




General Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced Power Trench[®] process that has been optimized for $r_{DS(on)}$, switching performance and ruggedness.

Applications

- DC/DC converters and Off-Line UPS
- Distributed Power Architectures and VRMs
- Primary Switch for 24 V and 48 V Systems
- High Voltage Synchronous Rectifier

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

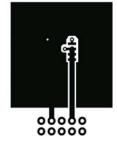
Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			150	V	
V _{GS}	Gate to Source Voltage			±20	V	
I _D	Drain Current -Continuous			7.5	Α	
	-Pulsed			30		
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	220	mJ	
P _D	Power Dissipation	T _C = 25 °C	(Note 1)	5.0	W	
	Power Dissipation	T _A = 25 °C	(Note 1a)	2.5	vv	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C	

Thermal Characteristics

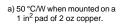
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	(Note 1)	25	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1a)	50	C/VV

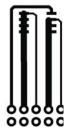
Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDS86240	FDS86240	SO-8	13 "	12 mm	2500 units


June 2010

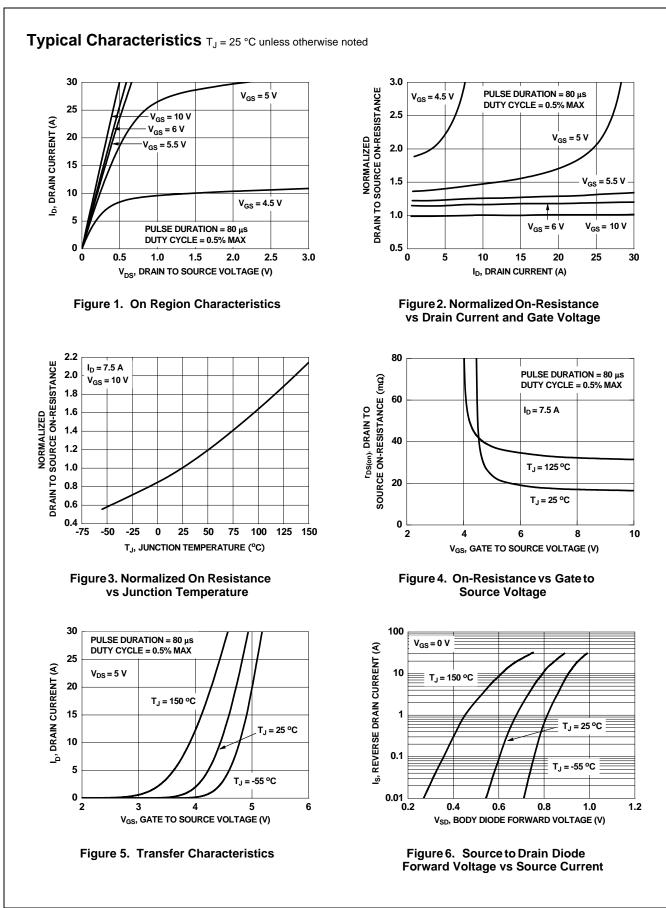
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	cteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0 V	150			V
$\frac{\Delta BV_{DS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu A$, referenced to 25 °C		105		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 120 V, V _{GS} = 0 V			1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
On Chara	cteristics					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \ \mu A$	2	2.7	4	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25 °C		-11		mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = 10 \text{ V}, \ \text{I}_{D} = 7.5 \text{ A}$	17.3 19.8		19.8	
		$V_{GS} = 6 V$, $I_D = 6.4 A$		19.7	26	mΩ
		V_{GS} = 10 V, I_{D} = 7.5 A, T_{J} = 125 °C		30.8	35.3	
9fs	Forward Transconductance	$V_{DS} = 10 \text{ V}, \ I_D = 7.5 \text{ A}$		26		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance			1930	2570	pF
C _{oss}	Output Capacitance	─ V _{DS} = 75 V, V _{GS} = 0 V, f = 1 MHz		198	265	pF
C _{rss}	Reverse Transfer Capacitance			8.3	15	pF
R _g	Gate Resistance			0.84		Ω
Switching	g Characteristics					
t _{d(on)}	Turn-On Delay Time			14	26	ns
t _r	Rise Time	V _{DD} = 75 V, I _D = 7.5 A,		4.2	10	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		24	39	ns
t _f	Fall Time			4.9	10	ns
Q _{g(TOT)}	Total Gate Charge	V _{GS} = 0 V to 10 V		28	40	nC
Q _{g(TOT)}	Total Gate Charge	$V_{GS} = 0 V \text{ to } 5 V$ $V_{DD} = 75 V$,		16	22	nC
Q _{gs}	Gate to Source Charge	I _D = 7.5 A		7.6		nC
Q _{gd}	Gate to Drain "Miller" Charge			5.3		nC
Drain-Soເ	urce Diode Characteristics					
	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = 7.5 A$ (Note 2)		0.77	1.3	
V _{SD}		$V_{GS} = 0 V, I_S = 2 A$ (Note 2)		0.70	1.2	V
t _{rr}	Reverse Recovery Time			75	120	ns

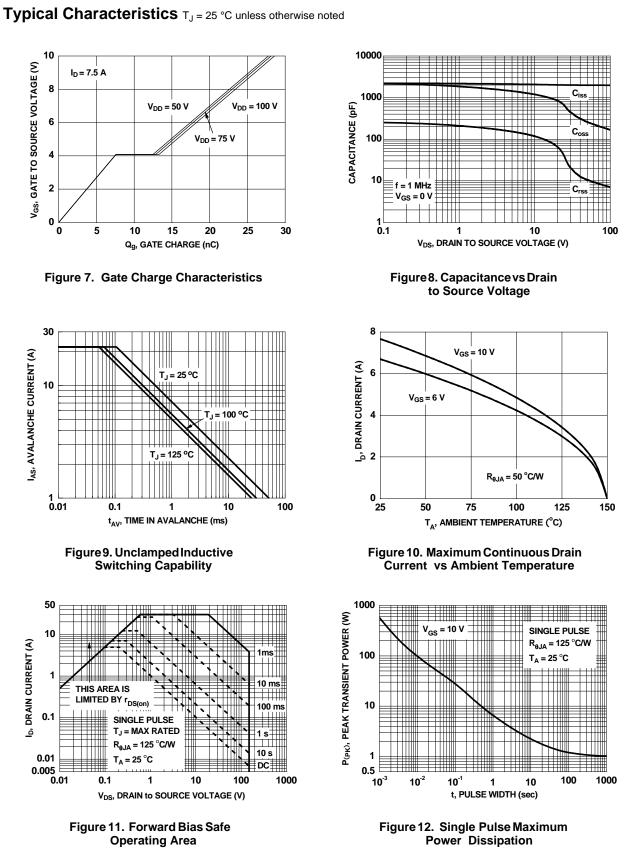

NOTES:


Q_{rr}

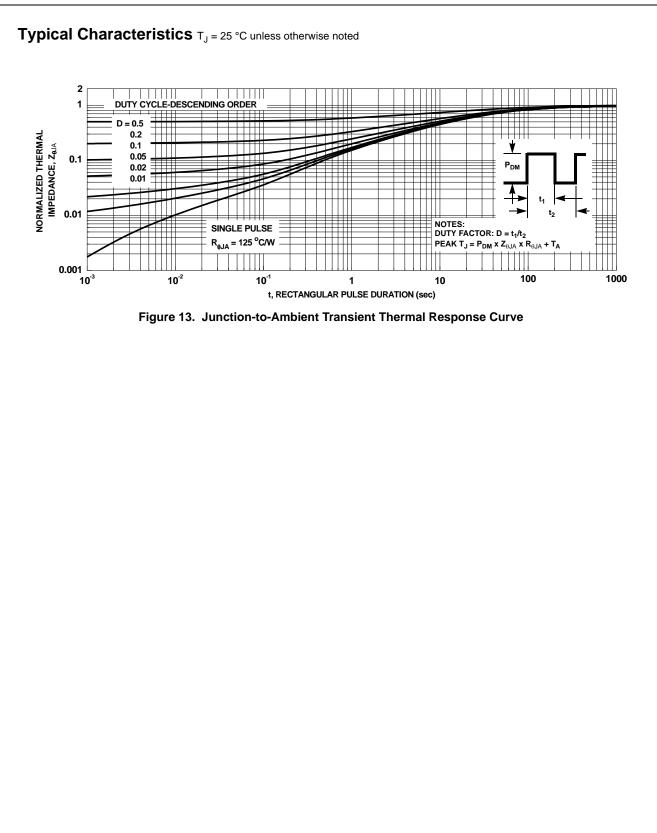
1. R_{0JA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.

Reverse Recovery Charge




b) 125 °C/W when mounted on a minimum pad.

109


175

nC

FDS86240 N-Channel PowerTrench[®] MOSFET

