
P1RX6B-SX51-02A Product Specification Sheet

ORIGINATOR:		C. ENG	I	DATE:		3/9/2012
OMRON.	P1RX6B	-SX51-02A Product Spec	Sheet	DOCUMEN DOC002	_	REV A
NETWORK PRODUCTS				S	HEET 1 C	OF 8

1.0 Features

- 5 receive lanes and 1 transmit lane over a single multimode fiber
- Low power consumption (1.1W)
- Mechanical enclosure serves as heat sink while allowing for FCC part 15 Class A compliance
- No manipulating or compressing the data
- Small footprint
- High-speed CML outputs

This device is **EXTREMELY SENSITIVE** to Electrostatic Discharge (ESD). At a minimum, all handling must be performed in accordance with an ANSI-compliant ESD Control Program (ANSI/ESD S20.20-2007) to mitigate possible ESD-induced damage. Reliability and life of the device will be adversely affected if these precautions are not met.

This device is a Class 3R Laser device and can cause damage to eye sight if used improperly. Refer to ANSI Z136 for proper handling and usage of Class 3R devices.

ORIGINATOR:		C. ENG		DATE:		3/9/2012
	P1RX6B	-SX51-02A Product Spec	Sheet	DOCUMEN DOC002	_	REV A
NETWORK PRODUCTS				S	HEET 2 C	OF 8

2.0 **Absolute Maximum Ratings**

Parameter	Symbol	Min	Тур	Max	Units
Storage Temperature ¹	Tst				°C
Supply Voltage ^{2 3}	Vcc				V
Operating Surface Temperature ⁴	Та				°C
Operating Humidity ⁵	RH				%
Input Voltage ⁶	V _{IN}				V

Optical Characteristics – High-speed Lanes 3.0

Parameter (per land	Symbol	Min	Тур	Max	Units	
Wavelength – Lane 0				778		nm
Wavelength – Lane 1				800		nm
Wavelength – Lane 2				825		nm
Wavelength – Lane 3				850		nm
Data Rate ⁷	SX51V SX51D					Gb/s
Peak Optical Input Power		Pin				dBm
Peak Optical Modulation Po	ower	Pin				dBm
OMA Sensitivity ⁸				-16.00		dBm
Input Data Pattern			ļ	DC-balanc	ed	

⁸ Optical Modulation Amplitude. Based on an unstressed input signal.

ORIGINATOR:	:	C. ENG		DATE:		3/9/2012
OMRON.	P1RX6B	-SX51-02A Product Spec	Sheet	DOCUMEN DOC002	_	REV A
NETWORK PRODUCTS				S	HEET 3 (OF 8

¹ Stresses listed may be applied without causing damage. Functionality at or above the values listed is not implied. Exposure to these values for extended periods may affect reliability.

² Supply voltage must be present before input signal may be applied.

Supply voltage must be present before input signal may be applied

Module must be powered down (OFF) before installation/removal.

⁴ See outline drawing for measurement point. Omron strongly recommends mounting with a heat sink.

Non condensing. Do not operate device if wet.

⁶ Supply voltage must be present before input signal may be applied. Driving the device in a power OFF state may result in permanent damage to the input pins.

Requires DC-balanced data pattern.

Electrical Specifications – High-speed Lanes 4.0

Parameter	Symbol	Min	Тур	Max	Units
Low Frequency Cutoff	F _{CUTOFF}		175		kHz
Total Jitter (RMS), per lane ⁹	T _{J1}		10		ps
Differential Output Voltage ¹⁰	V_{OD}		500		mVp-p
Loss of Signal Assert Sensitivity	LOS _{SEN-ON}		-14.50		dBm
Loss of Signal De-Assert Sensitivity	LOS _{SEN-OFF}		-13.00		dBm
Loss of Signal Output Low ¹¹	V_{LOS}				V
Loss of Signal Output High	V_{LOS}				V
Operating Supply Voltage	Vcc-Vee		3.30		V
Operating Supply Current	Icc				mA

Optical Characteristics – Bi-Directional Lanes 5.0

Receive Parameter	Symbol	Min	Тур	Max	Units
Wavelength - Lane 4			911		nm
Data Rate					Mb/s
Peak Optical Input Power	Pin				dBm
Peak Optical Modulation Power	Pin				dBm
OMA Sensitivity ¹²			-15.00		dBm
Input Data Pattern			DC-balanc	ed	

Transmit Parameter	Symbol	Min	Тур	Max	Units
Average Optical Power - Lane 5	Pavg		-1.5		dBm
Optical Modulation Amplitude			0.0		dBm
Wavelength - Lane 5			980		nm
Optical Rise/Fall Time			2000		Ps

ORIGINATOR	:	C. ENG	DATE:			3/9/2012
OMRON.	P1RX6B	-SX51-02A Product Spec	Sheet	DOCUMENT NO. DOC002323		REV A
NETWORK PRODUCTS				S	HEET 4 C	OF 8

⁹ Based on a jitter-free source
10 Differential back-terminated CML outputs
11 This output is asserted low when a loss of signal is detected on all lanes
12 Optical Modulation Amplitude. Based on an unstressed input signal.

Electrical Specifications – Bi-Directional Lanes 6.0

Receive Parameter	Symbol	Min	Тур	Max	Units
Low Frequency Cutoff	F _{CUTOFF}		35		kHz
Total Jitter (RMS) ¹³	T _{J1}		25		ps
Differential Output Voltage ¹⁴	V _{OD}		835		mVp-p
Loss of Signal Assert Sensitivity	LOS _{SEN-ON}		-15.5		dBm
Loss of Signal De-Assert Sensitivity	LOS _{SEN-OFF}		-13.5		dBm
Loss of Signal Output Low	V_{LOS}				V
Loss of Signal Output High ¹⁵	V_{LOS}				V

Transmit Parameter	Symbol	Min	Тур	Max	Units
Data Rate per Lane				155	Mb/s
Input Differential Impedance			100		ohm
Differential Input Voltage – Lane 5 ^{2,16}					mVp-p
Input Data Pattern			DC-balanc	ed	

7.0 **Laser Safety**

The P1RX6-SX51-02 meets Class-3R requirements. 17 Please use proper eye protection and handling practices per ANSI Z136.1.

ORIGINATOR		C. ENG	I	DATE:		3/9/2012
OMRON.	P1RX6B	-SX51-02A Product Spec	: Sheet	DOCUMEN DOC002	_	REV A
NETWORK PRODUCTS				S	HEET 5 C	OF 8

Based on a jitter-free source
 Differential back-terminated CML outputs

This output is asserted low when a loss of signal is detected on all lanes

16 Differential CML compatible inputs

17 Lane 4 data input with 50% duty cycle

Pin Numbers and Descriptions¹⁸ 8.0

The RX Data Module contains a 30 pin connector (DF12-30DS-0.5V(86)). For information on the specifications of the mating connector (DF12(4.0)-30DP-0.5V(86)), contact Hirose.

Pin#	Signal	Name	Description		
1	GND	Ground			
2	LOS _{HI}	High Speed LOS	Loss of Signal – High Speed Channels		
3	+ TD0	Ch 0 + Data Output	Positive differential output for 778nm lane		
4	LOS _{BI}	Ch 4 LOS	Loss of Signal – Bi-Directional Channel		
5	- TD0	Ch 0 - Data Output	Negative differential output for 778nm lane		
6	Reset	Reset	Microcontroller Reset ¹⁹		
7	+ TD1	Ch 1 + Data Output	Positive differential output for 800nm lane		
8	UART	UART_TX	Reserved for future use		
9	- TD1	Ch 1 - Data Output	Negative differential output for 800nm lane		
10	UART	UART_RX	Reserved for future use		
11	+ TD2	Ch 2 + Data Output	Positive differential output for 825nm lane		
12	NC	No connect	Reserved for future use		
13	- TD2	Ch 2 - Data Output	Negative differential output for 825nm lane		
14	NC	No connect	Reserved for future use		
15	+ TD3	Ch 3 + Data Output	Positive differential output for 850nm lane		
16	EN_BI	Enable	Enable ²⁰ – Bi-directional laser		
17	- TD3	Ch 3 - Data Output	Negative differential output for 850nm lane		
18	NC	No connect	Reserved for future use		
19	GND	Ground			
20	NC	No connect	Reserved for future use		
21	- IN5	Ch 5 - Data Input	Negative differential input for 980nm lane		
22	NC	No connect	Reserved for future use		
23	+ IN5	Ch 5 - Data Input	Positive differential input for 980nm lane		
24	NC	No connect	Reserved for future use		
25	+ TD4	Ch 4 - Data Output	Positive differential output for 911nm lane		
26	NC	No connect	Reserved for future use		
27	- TD4	Ch 4 - Data Output	Negative differential output for 911nm lane		
28	VCC ²	Voltage Input	+3.3 volt input		
29	GND	Ground			
30	VCC ²	Voltage Input	+3.3 volt input		

Verify pin assignments and polarity before powering on device
 Reset must be pulled high for normal operation

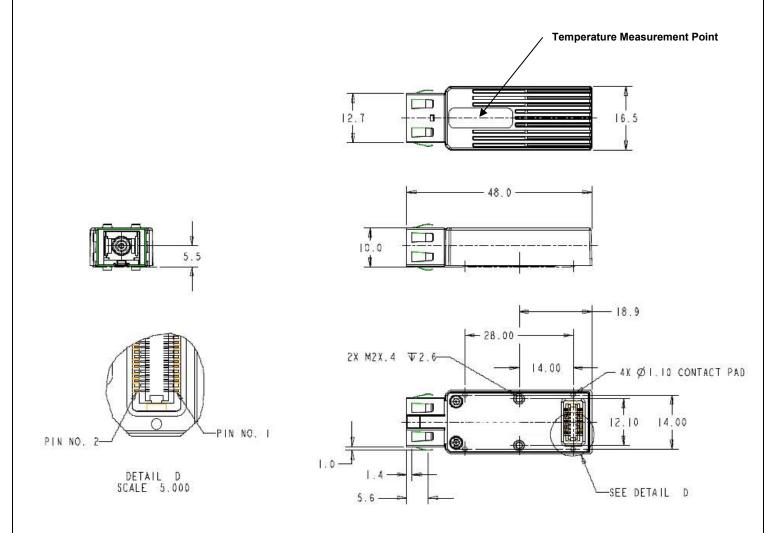
Enable to be pulled up to VCC for normal operation

ORIGINATOR:		C. ENG	DATE:		3/9/2012	
OMRON. P1R		B-SX51-02A Product Spec Sheet		DOCUMENT NO. DOC002323		REV A
NETWORK PRODUCTS				SHEET 6 OF 8		

9.0 Environmental Standards

Omron Network Products designs and manufactures its products to minimize the negative impact on our environment. As such, the P1RX6B-SX51-02 conforms to a variety of environmental and safety standards

Standard	Compliant	Certificate Available		
RoHS	Yes	Yes		
REACH	Yes	Yes		
FCC Part 15 Class A	Yes	No		


ORIGINATOR:		C. ENG	DATE:		3/9/2012	
OMRON P1RX6B-		SX51-02A Product Spec Sheet		DOCUMENT NO. DOC002323		REV A
NETWORK PRODUCTS				SHEET 7 OF 8		

10.0 Dimensions

The SX51-02 data module is designed to work with a standard SC ferrule only. Insertion of any other type may result in damage.

Dimensions and orientation are for reference only. Customers can request final, detailed dimensions, or a CAD drawing, through your Omron sales representative.

Dimensions are in mm

ORIGINATOR:		C. ENG	DATE:		3/9/2012	
OMRON.	P1RX6B	BB-SX51-02A Product Spec Sheet		DOCUMENT NO. DOC002323		REV A
NETWORK PRODUCTS				SHEET 8 OF 8		