FEATURES:

- Isolation Under Power-Off Conditions
- Over-voltage tolerant
- Latch-up performance exceeds 100 mA
- $\mathrm{Vcc}=2.3 \mathrm{~V}-3.6 \mathrm{~V}$, normal range
- ESD >2000V per MIL-STD-883, Method 3015; >200V using machine model ($C=200 \mathrm{pF}, \mathrm{R}=0$)
- Available in SSOP, QSOP, and TSSOP packages

APPLICATIONS:

- 3.3V High Speed Bus Switching and Bus Isolation

DESCRIPTION:

The CBTLVR3384 is a ten bit high-speed bus switch. It adds an internal series resistor with each switch to reduce reflection noise in high speed applications. Whenclosed, the switch acts as a source(series)terminationfor the driver connected to it.

The device is organized as dual 5 -bit bus switches with separate outputenable ($\overline{\mathrm{OE}}$) inputs, to allow use as two 5-bit bus switches or one 10-bit bus switch. When $\overline{\mathrm{OE}}$ is low, the associated 5 -bit bus switch is on and A port is connected to B port. When $\overline{\mathrm{OE}}$ ishigh, the switch is open, and ahigh-impedance state exists between the two ports.

To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should betied to Vccthrough a pullup resistor; the minimum value ofthe resistor is determined by the current-sinking capability of the driver.

FUNCTIONAL BLOCK DIAGRAM

SIMPLIFIEDSCHEMATIC,EACH SWITCH

PIN CONFIGURATION

SSOPI QSOPI TSSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Symbol	Description	Max.	Unit
Vcc	Supply Voltage Range	-0.5 to 4.6	V
VI	InputVoltage Range	-0.5 to 4.6	V
	Continuous Channel Current	128	mA
IIK	Input Clamp Current, V/IO <0	-50	mA
TsTG	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

FUNCTIONTABLE ${ }^{(1)}$

Inputs		Inputs/Outputs	
$\mathbf{1} \overline{\mathrm{OE}}$	$\mathbf{2} \overline{\mathrm{OE}}$	1B1-1B5	2B1-2B5
L	L	1A1-1A5	2A1-2A5
L	H	1A1-1A5	Z
H	L	Z	2A1-2A5
H	H	Z	Z

NOTE:

1. $\mathrm{H}=\mathrm{HIGH}$ Voltage Level

L = LOW Voltage Level
$X=$ Don't Care
Z = High Impedance

OPERATING CHARACTERISTICS ${ }^{(1)}$

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
Vcc	Supply Voltage		2.3	3.6	V
VIH	High-Level Control Input Voltage	$\mathrm{Vcc}=2.3 \mathrm{~V}$ to 2.7 V	1.7	-	V
		$\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V	2	-	
VIL	Low-Level Control Input Voltage	$\mathrm{Vcc}=2.3 \mathrm{~V}$ to 2.7V	-	0.7	V
		$\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V	-	0.8	
TA	Operating Free-Air Temperature		-40	+85	${ }^{\circ} \mathrm{C}$

NOTE:

1. All unused control inputs of the device must be held at Vcc or GND to ensure proper device operation.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE
Following Conditions Apply Unless Otherwise Specified:
Operating Condition: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions		Min.	Typ. ${ }^{(1)}$	Max.	Unit
VIK	Control Inputs, Datal/O	$\mathrm{Vcc}=3 \mathrm{~V}$, II $=-18 \mathrm{~mA}$		-	-	-1.2	V
11	Control Inputs	$\mathrm{Vcc}=3.6 \mathrm{~V}, \mathrm{VI}=\mathrm{Vcc}$ or GND		-	-	± 1	$\mu \mathrm{A}$
Ioz	Data I/O	$\mathrm{Vcc}=3.6 \mathrm{~V}$, Vo $=0 \mathrm{~V}$ or 3.6 V switch disabled		-	-	5	$\mu \mathrm{A}$
IofF		$\mathrm{Vcc}=0 \mathrm{~V}, \mathrm{VI}$ or $\mathrm{Vo}=0 \mathrm{~V}$ to 3.6V		-	-	10	$\mu \mathrm{A}$
Icc		$\mathrm{Vcc}=3.6 \mathrm{~V}, \mathrm{lo}=0, \mathrm{VI}=\mathrm{Vcc}$ or GND		-	-	10	$\mu \mathrm{A}$
$\Delta \mathrm{lcc}{ }^{(2)}$	Control Inputs	$\mathrm{Vcc}=3.6 \mathrm{~V}$, one input at 3 V , other inputs at Vcc or GND		-	-	300	$\mu \mathrm{A}$
Cl	Control Inputs	V I $=3 \mathrm{~V}$ or 0		-	4	-	pF
CIO(OFF)		$\mathrm{Vo}=3 \mathrm{~V}$ or 0, $\overline{\mathrm{OE}}=\mathrm{Vcc}$		-	7	-	pF
Ron(3)	Max. at $\mathrm{Vcc}=2.3 \mathrm{~V}$	V I $=0$	$10=64 \mathrm{~mA}$	-	30	47	Ω
	Typ. at $\mathrm{Vcc}=2.5 \mathrm{~V}$		$\mathrm{lo}=24 \mathrm{~mA}$	-	30	47	
		$\mathrm{V}_{\mathrm{I}}=1.7 \mathrm{~V}$	$1 \mathrm{O}=15 \mathrm{~mA}$	-	36	80	
	$\mathrm{Vcc}=3 \mathrm{~V}$	V I $=0$	$\mathrm{lo}=64 \mathrm{~mA}$	-	30	42	
			$\mathrm{lo}=24 \mathrm{~mA}$	-	30	42	
		$\mathrm{VI}=2.4 \mathrm{~V}$	$\mathrm{lo}=15 \mathrm{~mA}$	-	32	47	

NOTES:

1. Typical values are at $3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
2. The increase in supply current is attributable to each input that is at the specified voltage level rather than Vcc or GND.
3. This is measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two (A or B) terminals.

SWITCHING CHARACTERISTICS

Symbol	Parameter	$\mathrm{Vcc}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$		$\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		Unit
		Min.	Max.	Min.	Max.	
tpD ${ }^{(1)}$	Propagation Delay A to B or B to A	-	0.9	-	1.5	ns
ten	OutputEnable Time $\overline{\mathrm{OE}}$ to A or B	1	6	1	5.3	ns
tols	OutputDisableTime $\overline{\mathrm{OE}}$ to A or B	1	5.5	1	5.5	ns

NOTE:

1. The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance when driven by an ideal voltage source (zero output impededance).

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

Symbol	$\mathrm{Vcc}^{(1)} \mathbf{= 3 . 3 V} \mathbf{0 . 3} \mathbf{V}$	$\mathrm{Vcc}^{(2)} \mathbf{=} \mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$	Unit
VLOAD	6	$2 \times \mathrm{Vcc}$	V
VIH	3	Vcc	V
$\mathrm{V} T$	1.5	$\mathrm{Vcc} / 2$	V
VLZ	300	150	mV
VHz	300	150	mV
CL	50	30	pF

Test Circuits for All Outputs

DEFINITIONS:

$\mathrm{CL}=$ Load capacitance: includes jig and probe capacitance.
RT = Termination resistance: should be equal to Zout of the Pulse Generator.

NOTES:

1. Pulse Generator for All Pulses: Rate $\leq 10 \mathrm{MHz}$; $\mathrm{tF} \leq 2.5 \mathrm{~ns}$; $\mathrm{tR} \leq 2.5 \mathrm{~ns}$.
2. Pulse Generator for All Pulses: Rate $\leq 10 \mathrm{MHz}$; $\mathrm{tF} \leq 2 \mathrm{~ns}$; $\mathrm{tR} \leq 2 \mathrm{~ns}$.

SWITCH POSITION

Test	Switch
tPLZItPZL	VLOAD
tPHZIPzH	GND
tPD	Open

Propagation Delay

NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

Enable and Disable Times

ORDERINGINFORMATION

for SALES:
800-345-7015 or 408-727-6116
fax: 408-492-8674
unw.idt.com
for Tech Support:
logichelp@idt.com
(408) 654-6459

