DATA SHEET

UBA2021
 630 V driver IC for CFL and TL lamps

Product specification
Supersedes data of 2001 Jan 30

FEATURES

- Adjustable preheat and ignition time
- Adjustable preheat current
- Adjustable lamp power
- Lamp temperature stress protection at higher mains voltages
- Capacitive mode protection
- Protection against a too-low drive voltage for the power MOSFETs.

GENERAL DESCRIPTION

The UBA2021 is a high-voltage IC intended to drive and control Compact Fluorescent Lamps (CFL) or fluorescent TL-lamps. It contains a driver circuit for an external half-bridge, an oscillator and a control circuit for starting up, preheating, ignition, lamp burning and protection.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
High voltage supply						
$\mathrm{V}_{\text {FS }}$	high side supply voltage	$\mathrm{I}_{\text {FS }}<15 \mu \mathrm{~A} ; \mathrm{t}<0.5 \mathrm{~s}$	-	-	630	V
Start-up state						
$\mathrm{V}_{\text {VS(start) }}$	oscillator start voltage		-	11.95	-	V
$\mathrm{V}_{\mathrm{VS} \text { (stop) }}$	oscillator stop voltage		-	10.15	-	V
$\mathrm{I}_{\mathrm{VS} \text { (standby) }}$	standby current	$\mathrm{V}_{\mathrm{Vs}}=11 \mathrm{~V}$	-	200	-	$\mu \mathrm{A}$
Preheat mode						
$\mathrm{f}_{\text {start }}$	start frequency		-	108	-	kHz
t_{ph}	preheat time	$\mathrm{C}_{\mathrm{CP}}=100 \mathrm{nF}$	-	666	-	ms
$\mathrm{V}_{\text {RS(ctrl) }}$	control voltage at pin RS		-	-600	-	mV
Frequency sweep to ignition						
f_{B}	bottom frequency		-	42.9	-	kHz
$\mathrm{t}_{\text {ign }}$	ignition time		-	625	-	ms
Normal operation						
f_{B}	bottom frequency		-	42.9	-	kHz
t_{no}	non-overlap time		-	1.4	-	$\mu \mathrm{s}$
$\mathrm{I}_{\text {tot }}$	total supply current	$\mathrm{f}_{\mathrm{B}}=43 \mathrm{kHz}$	-	1	-	mA
$\mathrm{R}_{\mathrm{G}_{1} \text { (on), },} \mathrm{R}_{\mathrm{G} 2 \text { (on) }}$	high and low side on resistance		-	126	-	Ω
$\mathrm{R}_{\mathrm{G1} \text { (off), }}, \mathrm{R}_{\mathrm{G} 2 \text { (off) }}$	high and low side off resistance		-	75	-	Ω
Feed-forward						
fff	feed-forward frequency	$\mathrm{I}_{\mathrm{RHV}}=0.75 \mathrm{~mA}$	-	63.6	-	kHz
		$\mathrm{I}_{\mathrm{RHV}}=1.0 \mathrm{~mA}$	-	84.5	-	kHz
$\mathrm{l}_{\text {(RHV) }}$	operating range of input current at pin RHV		0	-	1000	$\mu \mathrm{A}$

630 V driver IC for CFL and TL lamps

UBA2021

ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
UBA2021T	SO14	plastic small outline package; 14 leads; body width 3.9 mm	SOT108-1
UBA2021P	DIP14	plastic dual in-line package; 14 leads (300 mil)	SOT27-1

BLOCK DIAGRAM

Fig. 1 Block diagram.

630 V driver IC for CFL and TL lamps

UBA2021

PINNING

SYMBOL	PIN	
FS	1	high side floating supply voltage
G1	2	gate high transistor (T1)
S1	3	source high transistor (T1)
n.c.	4	high-voltage spacer, not to be connected
VS	5	low voltage supply
G2	6	gate low transistor (T2)
PGND	7	power ground
CP	8	timing/averaging capacitor
RS	9	current monitoring input
RREF	10	reference resistor
SGND	11	signal ground
CF	13	oscillator capacitor
RHV	14	start-up resistor/feed-forward resistor
CI	integrating capacitor	

Fig. 2 Pin configuration (SO14).

Fig. 3 Pin configuration (DIP14).

FUNCTIONAL DESCRIPTION

Introduction

The UBA2021 is an integrated circuit for electronically ballasted compact fluorescent lamps and their derivatives operating with mains voltages up to 240 V (RMS). It provides all the necessary functions for preheat, ignition and on-state operation of the lamp. In addition to the control function, the IC provides level shift and drive functions for the two discrete power MOSFETs, T1 and T2 (see Fig.7).

Initial start-up

Initial start-up is achieved by charging capacitor CS9 with the current applied to pin RHV. At start-up, MOSFET T2 conducts and T 1 is non-conducting, ensuring $\mathrm{C}_{\mathrm{boot}}$ becomes charged. This start-up state is reached for a supply voltage $\mathrm{V}_{\mathrm{VS} \text { (reset) }}$ (this is the voltage level at pin VS at which the circuit will be reset to the initial state) and maintained until the low voltage supply (V_{Vs}) reaches a value of V_{VS} (start). The circuit is reset in the start-up state.

Oscillation

When the low voltage supply (V_{VS}) has reached the value of $\mathrm{V}_{\mathrm{VS} \text { (start) }}$ the circuit starts oscillating in the preheat state. The internal oscillator is a current-controlled circuit which generates a sawtooth waveform. The frequency of the sawtooth is determined by the capacitor C_{CF} and the current out of pin CF (mainly set by $\mathrm{R}_{\text {RREF }}$). The sawtooth frequency is twice the frequency of the signal across the load. The IC brings MOSFETs T1 and T2 alternately into conduction with a duty factor of approximately 50%. Figure 4 represents the timing of the IC. The circuit block 'non-overlap' generates a non-overlap time t_{no} that ensures conduction periods of exclusively T1 or T2. Time $t_{n o}$ is dependent on the reference current I IREFF.

Fig. 4 Oscillator timing.

Operation in the preheat mode

The circuit starts oscillating at approximately $2.5 \times f_{B}$ (108 kHz). The frequency gradually decreases until a defined value of current $I_{\text {shunt }}$ is reached (see Fig.5). The slope of the decrease in frequency is determined by capacitor C_{CI}. The frequency during preheating is approximately 90 kHz . This frequency is well above the resonant frequency of the load, which means that the lamp is off; the load consists of L2, C5 and the electrode resistance only. The preheat time is determined by capacitor C_{CP}. The circuit can be locked in the preheat state by connecting pin CP to ground. During preheating, the circuit monitors the load current by measuring the voltage drop over external resistor $\mathrm{R}_{\text {shunt }}$ at the end of conduction of T 2 with decision level $\mathrm{V}_{\mathrm{RS}(\text { ctrl) }}$. The frequency is decreased as long as $\mathrm{V}_{\mathrm{RS}}>\mathrm{V}_{\mathrm{RS}(\text { ctrl) }}$. The frequency is increased for $\mathrm{V}_{\mathrm{RS}}<\mathrm{V}_{\mathrm{RS}(\text { (ctr) }}$.

Fig. 5 Operation in the preheat mode.

Ignition state

The RS monitoring function changes from $\mathrm{V}_{\mathrm{RS} \text { (ctrl) }}$ regulation to capacitive mode protection at the end of the preheat time. Normally this results in a further frequency decrease down to the bottom frequency f_{B} (approximately 43 kHz). The rate of change of frequency in the ignition state is less than that in the preheat mode. During the downward frequency sweep, the circuit sweeps through the resonant frequency of the load. A high voltage then appears across the lamp. This voltage normally ignites the lamp.

Failure to ignite

Excessive current levels may occur if the lamp fails to ignite. The IC does not limit these currents in any manner.

Transition to the burn state

Assuming that the lamp has ignited during the downward frequency sweep, the frequency normally decreases to the bottom frequency. The IC can transit to the burn state in two ways:

1. In the event that the bottom frequency is not reached, transition is made after reaching the ignition time tign.
2. As soon as the bottom frequency is reached.

The bottom frequency is determined by $\mathrm{R}_{\text {RREF }}$ and C_{CF}.

Feed-forward frequency

Above a defined voltage level the oscillation frequency also depends on the supply voltage of the half-bridge (see Fig.6). The current for the current-controlled oscillator is in the feed-forward range derived from the current through $R_{R H V}$. The feed-forward frequency is proportional to the average value of the current through $\mathrm{R}_{\mathrm{RHV}}$ within the operating range of $\mathrm{I}_{\mathrm{i}(\mathrm{RHV})}$, given the lower limit set by f_{B}. For currents beyond the operating range (i.e. between 1.0 and 1.6 mA) the feed-forward frequency is clamped. In order to prevent feed-forward of ripple on $V_{\text {in }}$, the ripple is filtered out. The capacitor connected to pin CP is used for this purpose. This pin is also used in the preheat state and the ignition state for timing (t_{ph} and $\mathrm{t}_{\mathrm{ign}}$).

Capacitive mode protection

When the preheat mode is completed, the IC will protect the power circuit against losing the zero voltage switching condition and getting too close to the capacitive mode of operation. This is detected by monitoring voltage V_{RS} at pin RS. If the voltage is below $\mathrm{V}_{\mathrm{RS}(\text { cap })}$ at the time of turn-on of T 2 , then capacitive mode operation is assumed. Consequently the frequency increases as long as the capacitive mode is detected. The frequency decreases down to the feed-forward frequency if no capacitive mode is detected. Frequency modulation is achieved via pin Cl .

IC supply

Initially, the IC is supplied from $\mathrm{V}_{\text {in }}$ by the current through $R_{\text {RHV }}$. This current charges the supply capacitor CS9 via an internal diode. As soon as V_{Vs} exceeds $\mathrm{V}_{\mathrm{Vs} \text { (start) }}$, the circuit starts oscillating. After the preheat phase is finished, pin RHV is connected to an internal resistor $\mathrm{R}_{\mathrm{i}(\mathrm{RHV}) \text {; prior }}$ to this, pin RHV is internally connected to pin VS. The voltage level at pin RHV thus drops from $\mathrm{V}_{\text {Vs }}+\mathrm{V}_{\text {diode }}$ to $\mathrm{I}_{\mathrm{RHV}} \times \mathrm{R}_{\mathrm{i}(\mathrm{RHV})}$. The capacitor CS9 at pin VS will now be charged via the snubber capacitor CS7. Excess charge is drained by an internal clamp that turns on at voltage $\mathrm{V}_{\mathrm{VS} \text { (clamp) }}$.

Minimum gate-source voltage of T1 and T2

The high side driver is supplied via capacitor $\mathrm{C}_{\text {boot }}$. Capacitor $\mathrm{C}_{\text {boot }}$ is charged via the bootstrap switch during the on-periods of T2. The IC stops oscillating at a voltage level $\mathrm{V}_{\mathrm{VS}(\text { stop) })}$. Given a maximum charge consumption on the load at pin G 1 of $1 \mathrm{nC} / \mathrm{V}$, this safeguards the minimum drive voltages $\mathrm{V}_{(\mathrm{G} 1-\mathrm{S} 1)}$ for the high side driver; see Table 1.

Table 1 Minimum gate-source voltages

FREQUENCY	VOLTAGE
$<75 \mathrm{kHz}$	8 V (min.)
75 kHz to 85 kHz	7 V (min.)
$\geq 85 \mathrm{kHz}$	6 V (min.)

The drive voltage at G 2 will exceed the drive voltage of the high side driver.

Frequency and change in frequency

At any point in time during oscillation, the circuit will operate between f_{B} and $f_{s t a r t}$. Any change in frequency will be gradual, no steps in frequency will occur. Changes in frequency caused by a change in voltage at pin Cl show a rather-constant df/dt over the entire frequency range. The following rates are realised (at a frequency of 85 kHz and with a 100 nF capacitor connected to pin CI):

- For any increase in frequency: df/dt is between 15 and $37.5 \mathrm{kHz} / \mathrm{ms}$
- During preheat and normal operation: df/dt for a decrease in frequency is between -6 and $-15 \mathrm{kHz} / \mathrm{ms}$
- During the ignition phase: $\mathrm{dt} / \mathrm{dt}$ for a decrease in frequency is between -150 and $-375 \mathrm{~Hz} / \mathrm{ms}$.

Ground pins

Pin PGND is the ground reference of the IC with respect to the application. As an exception, pin SGND provides a local ground reference for the components connected to pins CP, CI, RREF and CF. For this purpose pins PGND and SGND are short-circuited internally. External connection of pins PGND and SGND is not preferred. The sum of currents flowing out of the pins CP, CI, RREF, CF and SGND must remain zero at any time.

Charge coupling

Due to parasitic capacitive coupling to the high voltage circuitry, all pins are burdened with a repetitive charge injection. Given the typical application in Fig.7, pins RREF and CF are sensitive to this charge injection. For the rating $Q_{\text {couple }}$ a safe functional operation of the IC is guaranteed, independent of the current level. Charge coupling at current levels below $50 \mu \mathrm{~A}$ will not interfere with the accuracy of the $\mathrm{V}_{\mathrm{RS}(\text { cap })}$ and $\mathrm{V}_{\mathrm{RS} \text { (ctrl) }}$ levels. Charge coupling at current levels below $20 \mu \mathrm{~A}$ will not interfere with the accuracy of any parameter.

630 V driver IC for CFL and TL lamps

UBA2021

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134); all voltages referenced to ground.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
$\mathrm{V}_{\text {FS }}$	high side floating supply voltage	operating	-	570	V
		$\mathrm{t} \leq 0.5 \mathrm{~s}$	-	630	V
$\mathrm{I}_{\text {VS(clamp) }}$	clamp current	$\mathrm{t} \leq 0.5 \mathrm{~s}$	-	35	mA
$\mathrm{~V}_{\mathrm{RS}}$	input voltage pin RS		-2.5	+2.5	V
		transient of 50 ns	-15.0	+2.5	V
SR	slew rate at pins S1, G1 and FS (with respect to ground)		-4	+4	$\mathrm{~V} / \mathrm{ns}$
P	power dissipation		-	500	mW
$\mathrm{~T}_{\text {amb }}$	ambient temperature		-40	+150	${ }^{\circ} \mathrm{C}$
T_{j}	junction temperature		-40	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature		-55	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{Q}_{\text {couple }}$	charge coupling at pins RREF and CF	operating	-8	+8	pC
$\mathrm{V}_{\text {es }}$	electrostatic handling voltage	human body model; note 1	-	3000	V
		machine model; note 2	-	300	V

Notes

1. Human body model: all pins are 3000 V maximum, except pins FS, G1, S1 and VS which are 1500 V maximum and pin G2 which is 1000 V maximum.
2. Machine model: all pins are 300 V maximum, except pin G 2 which is 125 V maximum.

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
$R_{\text {th(j-a) }}$	thermal resistance from junction to ambient	in free air		
	SO14		100	K/W
	DIP14		60	K/W
$\mathrm{R}_{\text {th(j-pin) }}$	thermal resistance from junction to pcb	in free air	50	K/W
	SO14		30	K/W

QUALITY SPECIFICATION

In accordance with "SNW-FQ-611-E".

CHARACTERISTICS

$\mathrm{V}_{\mathrm{VS}}=11 \mathrm{~V} ; \mathrm{V}_{\mathrm{FS}}-\mathrm{V}_{\mathrm{S} 1}=11 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; all voltages referenced to ground; see Fig.7; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
High voltage supply						
IL	leakage current on high voltage pins	$\mathrm{V}_{\mathrm{FS}}, \mathrm{V}_{\mathrm{G} 1}$ and $\mathrm{V}_{\mathrm{S} 1}=630 \mathrm{~V}$	-	-	15	$\mu \mathrm{A}$
Start-up state						
$\mathrm{V}_{\mathrm{VS} \text { (reset) }}$	reset voltage	T1 off; T2 on	4.0	5.5	6.5	V
$\mathrm{V}_{\text {VS(start) }}$	oscillator start voltage		11.35	11.95	12.55	V
$\mathrm{V}_{\text {VS(stop) }}$	oscillator stop voltage		9.55	10.15	10.75	V
$\mathrm{V}_{\mathrm{VS} \text { (hys) }}$	supply voltage hysteresis		1.5	1.8	2.0	V
IVS(standby)	standby supply current at pin VS	$\mathrm{V}_{\text {Vs }}=11 \mathrm{~V}$; note 1	150	200	250	$\mu \mathrm{A}$
$\Delta \mathrm{V}_{\text {(RHV-VS) }}$	voltage difference between pins RHV and VS	$\mathrm{I}_{\mathrm{RHV}}=1.0 \mathrm{~mA}$	0.7	0.8	1.0	V
$\mathrm{V}_{\mathrm{VS} \text { (clamp-start) }}$	clamp margin $\mathrm{V}_{\mathrm{VS} \text { (clamp) }}$ to $\mathrm{V}_{\mathrm{VS} \text { (start) }}$	note 2	0.2	0.3	0.4	V
IVs(clamp)	clamp current	$\mathrm{V}_{\mathrm{vs}}<17 \mathrm{~V}$	-	14	35	mA
Preheat mode						
$\mathrm{f}_{\text {start }}$	starting frequency	$\mathrm{V}_{\mathrm{CI}}=0 \mathrm{~V}$	98	108	118	kHz
t_{g}	conducting time T1 and T2	$\mathrm{f}_{\text {start }}=108 \mathrm{kHz}$	-	3.2	-	$\mu \mathrm{s}$
$\mathrm{I}_{\mathrm{Cl} \text { (charge) }}$	charge current at pin Cl	$\mathrm{V}_{\mathrm{CI}}=1.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{RS}}=-0.3 \mathrm{~V}$	38	44	50	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CI (discharge) }}$	discharge current at pin Cl	$\mathrm{V}_{\mathrm{CI}}=1.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{RS}}=-0.9 \mathrm{~V}$	79	93	107	$\mu \mathrm{A}$
t_{ph}	preheat time		599	666	733	ms
$\mathrm{I}_{\text {CP(charge) }}$	charge current at pin CP	$\mathrm{V}_{\mathrm{CP}}=1 \mathrm{~V}$	-	6.0	-	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CP(discharge) }}$	discharge current at pin CP	$\mathrm{V}_{\mathrm{CP}}=1 \mathrm{~V}$	-	5.95	-	$\mu \mathrm{A}$
$\Delta \mathrm{V}_{\mathrm{CP}(\mathrm{pk})}$	peak voltage difference at pin CP	when timing	-	2.5	-	V
$\mathrm{V}_{\text {RS(ctrl) }}$	control voltage at pin RS	note 3	-636	-600	-564	mV

Frequency sweep to ignition

$\mathrm{I}_{\mathrm{Cl}(\text { charge })}$	charge current at pin Cl	$\mathrm{V}_{\mathrm{CI}}=1.5 \mathrm{~V} ; \mathrm{f} \approx 85 \mathrm{kHz}$	0.8	1.0	1.2	$\mu \mathrm{~A}$
f_{B}	bottom frequency	V_{CI} at clamp level	-	42.9	-	kHz
$\mathrm{t}_{\text {ign }}$	ignition time		-	625	-	ms

Normal operation

f_{B}	bottom frequency		41.21	42.90	44.59	kHz
t_{g}	conducting time T1 and T2	$\mathrm{f}_{\mathrm{B}}=43 \mathrm{kHz}$	-	10.2	-	$\mu \mathrm{s}$
t_{no}	non-overlap conductance time		1.05	1.4	1.75	$\mu \mathrm{~s}$
$\mathrm{I}_{\text {tot }}$	total supply current	$\mathrm{f}_{\mathrm{B}}=43 \mathrm{kHz} ;$ note 4	0.85	1.0	1.1	mA
$\mathrm{~V}_{\mathrm{RS} \text { (cap) }}$	capacitive mode control voltage	note 5	0	20	40	mV
$\mathrm{V}_{\mathrm{RREF}}$	reference voltage	note 6	2.425	2.5	2.575	V
$\mathrm{~V}_{\mathrm{G} 1 \text { (on) }}$	on voltage at pin G 1	$\left\|\mathrm{I}_{\mathrm{G} 1}\right\|=1 \mathrm{~mA}$	10.5	-	-	V
$\mathrm{V}_{\mathrm{G} 1 \text { (off) }}$	off voltage at pin G 1	$\left\|\mathrm{I}_{\mathrm{G} 1}\right\|=1 \mathrm{~mA}$	-	-	0.3	V
$\mathrm{~V}_{\mathrm{G} 2 \text { (on) }}$	on voltage at pin G 2	$\left\|\mathrm{I}_{\mathrm{G} 2}\right\|=1 \mathrm{~mA}$	10.5	-	-	V
$\mathrm{V}_{\mathrm{G} 2 \text { (off) }}$	off voltage at pin G 2	$\mathrm{I}_{\mathrm{G} 2} \mid=1 \mathrm{~mA}$	-	-	0.3	V
$\mathrm{R}_{\mathrm{G} 1 \text { (on) }}$	high side driver on resistance	$\mathrm{V}_{(\mathrm{G} 1-\mathrm{S} 1)}=3 \mathrm{~V} ;$ note 7	100	126	152	Ω

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{R}_{\mathrm{G1} \text { (off) }}$	high side driver off resistance	$\mathrm{V}_{(\mathrm{G} 1-\mathrm{S} 1)}=3 \mathrm{~V}$; note 7	60	75	90	Ω
$\mathrm{R}_{\mathrm{G} 2 \text { (on) }}$	low side driver on resistance	$\mathrm{V}_{\mathrm{G} 2}=3 \mathrm{~V}$; note 7	100	126	152	Ω
$\mathrm{R}_{\mathrm{G} 2 \text { (off) }}$	low side driver off resistance	$\mathrm{V}_{\mathrm{G} 2}=3 \mathrm{~V}$; note 7	60	75	90	Ω
$\mathrm{V}_{\text {drop }}$	voltage drop at bootstrap switch	$\mathrm{I}_{\text {FS }}=5 \mathrm{~mA}$	0.6	1.0	1.4	V
Feed-forward						
$\mathrm{R}_{\mathrm{i} \text { (RHV) }}$	input resistance at pin RHV		1.54	2.2	2.86	k Ω
$\mathrm{I}_{\text {(} \mathrm{RHV})}$	operating range of input current at pin RHV	note 8	0	-	1000	$\mu \mathrm{A}$
fff	feed-forward frequency	$\mathrm{I}_{\mathrm{RHV}}=0.75 \mathrm{~mA}$	60.4	63.6	66.15	kHz
		$\mathrm{I}_{\mathrm{RHV}}=1 \mathrm{~mA}$	80.3	84.5	88.2	kHz
$\mathrm{SYM}_{\mathrm{ff}}$	symmetry	$\mathrm{I}_{\mathrm{RHV}}=1 \mathrm{~mA}$; note 9	0.9	1.0	1.1	
RR	ripple rejection	$\mathrm{f}_{\mathrm{Vin}}=100 \mathrm{~Hz}$	-	6	-	dB
$\mathrm{R}_{\mathrm{CP} \text { (sw) }}$	CP switch series resistance	$\mathrm{I}_{\mathrm{CP}}=100 \mu \mathrm{~A}$	0.75	1.5	2.25	$\mathrm{k} \Omega$
R_{AV}	averaging resistor	$\mathrm{I}_{\mathrm{CP}}=10 \mu \mathrm{~A}$	22.4	32	41.6	k Ω

Notes

1. The start-up supply current is specified in a temperature (T_{vj}) range of 0 to $125^{\circ} \mathrm{C}$. For $\mathrm{T}_{\mathrm{vj}}<0$ and $\mathrm{T}_{\mathrm{vj}}>125^{\circ} \mathrm{C}$ the start-up supply current is $<350 \mu \mathrm{~A}$.
2. The clamp margin is defined as the voltage difference between turn-on of the clamp and start of oscillation. The clamp is in the off-state at start of oscillation.
3. Data sampling of $\mathrm{V}_{\mathrm{RS}(\text { ctrl) }}$ is performed at the end of conduction of T 2 .
4. The total supply current is specified in a temperature (T_{vj}) range of -20 to $+125^{\circ} \mathrm{C}$. For $\mathrm{T}_{\mathrm{vj}}<-20$ and $\mathrm{T}_{\mathrm{vj}}>125^{\circ} \mathrm{C}$ the total supply current is $<1.5 \mathrm{~mA}$.
5. Data sampling of $\mathrm{V}_{\mathrm{RS} \text { (cap) }}$ is performed at the start of conduction of T 2 .
6. Within the allowed range of $R_{\text {RREF }}$, defined as $30 \mathrm{k} \Omega \pm 10 \%$.
7. Typical values for the on and off resistances at $\mathrm{T}_{\mathrm{vj}}=87.5^{\circ} \mathrm{C}$ are: $\mathrm{R}_{\mathrm{G} 2 \text { (on) }}$ and $\mathrm{R}_{\mathrm{G} 1 \text { (on) }}=164 \Omega, \mathrm{R}_{\mathrm{G} 2 \text { (off) }}$ and $R_{G 1 \text { (off) }}=100 \Omega$.
8. The input current at pin RHV may increase to $1600 \mu \mathrm{~A}$ during voltage transient at $\mathrm{V}_{\mathrm{in} \text {. }}$. Only for currents $\mathrm{I}_{\mathrm{RHV}}$ beyond approximately $550 \mu \mathrm{~A}$ is the oscillator frequency proportional to I_{RHV}.
9. The symmetry $\mathrm{SYM}_{\mathrm{ff}}$ is calculated from the quotient $\mathrm{SYM}_{\mathrm{ff}}=\mathrm{T} 1_{\text {tot }} / T 2_{\text {tot }}$, with $\mathrm{T}_{\text {tot }}$ the time between turn-off of G 2 and turn-off of G1, and $\mathrm{T}_{\text {tot }}$ the time between turn-off of G 1 and turn-off of G 2 .

630 V driver IC for CFL and TL lamps

DESIGN EQUATIONS

- Bottom frequency: $\mathrm{f}_{\mathrm{B}}=\frac{1}{2 \times\left\{\left[\left(\mathrm{C}_{\mathrm{CF}}+\mathrm{C}_{\mathrm{par}}\right) \times\left(\mathrm{X} 1 \times \mathrm{R}_{\mathrm{RREF}}-\mathrm{R}_{\mathrm{int}}\right)\right]+\tau\right\}}$
- Feed-forward frequency: $\mathrm{f}_{\mathrm{ff}}=\frac{1}{2 \times\left\{\left[\left(\mathrm{C}_{\mathrm{CF}}+\mathrm{C}_{\mathrm{par}}\right) \times\left(\frac{\mathrm{X} 2 \times \mathrm{V}_{\mathrm{RREF}}}{\mathrm{I}_{\mathrm{i}(\mathrm{RHV})}}-\mathrm{R}_{\mathrm{int}}\right)\right]+\tau\right\}}$

Where:

- X1 = 3.68
$-\mathrm{X} 2=22.28$
- $\tau=0.4 \mu \mathrm{~s}$
$-\mathrm{R}_{\mathrm{int}}=3 \mathrm{k} \Omega$
$-\mathrm{C}_{\mathrm{par}}=4.7 \mathrm{pF}$
- Operating frequency is the maximum of $\mathrm{f}_{\mathrm{B}}, \mathrm{f}_{\mathrm{ff}}$ or f_{cm} Where:
- $f_{B}=$ bottom frequency
- $\mathrm{f}_{\mathrm{ff}}=$ feed-forward frequency
- $f_{c m}=$ frequency due to capacitive mode detection
- Preheat time: $\mathrm{t}_{\mathrm{ph}}=\frac{\mathrm{C}_{\mathrm{CP}}}{150 \mathrm{nF}} \times \frac{R_{\mathrm{RREF}}}{30 \mathrm{k} \Omega}$
- Ignition time: $\mathrm{t}_{\mathrm{ign}}=\frac{15}{16} \times \mathrm{t}_{\mathrm{ph}}$
- Non-overlap time: $\mathrm{t}_{\mathrm{no}}=1.4 \mu \mathrm{~s} \times \frac{\mathrm{R}_{\mathrm{RREF}}}{30 \mathrm{k} \Omega}$

APPLICATION INFORMATION

Fig. 7 Application diagram.

PACKAGE OUTLINES

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\underset{\max }{\mathrm{A}}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$\mathrm{Z}^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 8.75 \\ & 8.55 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.069	$\begin{aligned} & 0.010 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\left.\begin{array}{\|l\|} 0.0100 \\ 0.0075 \end{array} \right\rvert\,$	$\begin{aligned} & 0.35 \\ & 0.34 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.050	$\begin{aligned} & 0.244 \\ & 0.228 \end{aligned}$	0.041	$\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.028 \\ & 0.024 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT108-1	$076 E 06$	MS-012			$-99-12-27$	

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\underset{\max .}{A}$	A_{1} min.	$\underset{\mathrm{A}_{2}}{ }$ max.	b	b_{1}	c	$D^{(1)}$	$E^{(1)}$	e	e_{1}	L	M_{E}	$\mathbf{M}_{\mathbf{H}}$	w	$\underset{\max }{\mathrm{Z}^{(1)}}$
mm	4.2	0.51	3.2	$\begin{aligned} & 1.73 \\ & 1.13 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 19.50 \\ & 18.55 \end{aligned}$	$\begin{aligned} & 6.48 \\ & 6.20 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.60 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 8.25 \\ & 7.80 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.3 \end{gathered}$	0.254	2.2
inches	0.17	0.020	0.13	$\begin{aligned} & 0.068 \\ & 0.044 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.009 \end{aligned}$	$\begin{aligned} & \hline 0.77 \\ & 0.73 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.24 \end{aligned}$	0.10	0.30	$\begin{aligned} & \hline 0.14 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.33 \end{aligned}$	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT27-1	$050 G 04$	MO-001	SC-501-14		-	

SOLDERING

Introduction

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398652 90011).

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mount components are mixed on one printed-circuit board. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

Through-hole mount packages

Soldering by dipping or by solder wave

The maximum permissible temperature of the solder is $260^{\circ} \mathrm{C}$; solder at this temperature must not be in contact with the joints for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($\mathrm{T}_{\text {stg(max) }}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Manual soldering

Apply the soldering iron (24 V or less) to the lead(s) of the package, either below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than $300^{\circ} \mathrm{C}$ it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and $400^{\circ} \mathrm{C}$, contact may be up to 5 seconds.

Surface mount packages

Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 to $250^{\circ} \mathrm{C}$. The top-surface temperature of the packages should preferable be kept below $220^{\circ} \mathrm{C}$ for thick/large packages, and below $235^{\circ} \mathrm{C}$ for small/thin packages.

Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.
If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
- larger than or equal to 1.27 mm , the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
- smaller than 1.27 mm , the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.
The footprint must incorporate solder thieves at the downstream end.
- For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$.
A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

MANUAL SOLDERING

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

Suitability of IC packages for wave, reflow and dipping soldering methods

MOUNTING	PACKAGE ${ }^{(1)}$	SOLDERING METHOD		
		WAVE	REFLOW ${ }^{(2)}$	DIPPING
Through-hole mount	DBS, DIP, HDIP, SDIP, SIL	suitable ${ }^{(3)}$	-	suitable
Surface mount	BGA, LBGA, LFBGA, SQFP, TFBGA, VFBGA HBCC, HBGA, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, HVQFN, HVSON, SMS PLCC ${ }^{(5)}$, SO, SOJ LQFP, QFP, TQFP SSOP, TSSOP, VSO	not suitable not suitable ${ }^{(4)}$ suitable not recommended ${ }^{(5)(6)}$ not recommended ${ }^{(7)}$	suitable suitable suitable suitable suitable	$-$

Notes

1. For more detailed information on the BGA packages refer to the "(LF)BGA Application Note" (AN01026); order a copy from your Philips Semiconductors sales office.
2. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
3. For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board.
4. These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side, the solder might be deposited on the heatsink surface.
5. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
6. Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm .
7. Wave soldering is suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm .

DATA SHEET STATUS

DATA SHEET STATUS ${ }^{(1)}$	PRODUCT STATUS	
Objective data	Development	DEFINITIONS
Preliminary data	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.	
Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.	
	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

Notes

1. Please consult the most recently issued data sheet before initiating or completing a design.
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

DEFINITIONS

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

NOTES

NOTES

Philips Semiconductors - a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 402724825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

