NPN Silicon Power Transistors SWITCHMODE ${ }^{m}$ Bridge Series

... specifically designed for use in half bridge and full bridge off line converters.

- Excellent Dynamic Saturation Characteristics
- Rugged RBSOA Capability
- Collector-Emitter Sustaining Voltage - $\mathrm{V}_{\mathrm{CEO}(\mathrm{sus})}-400 \mathrm{~V}$
- Collector-Emitter Breakdown - $\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}-650 \mathrm{~V}$
- State-of-Art Bipolar Power Transistor Design
- Fast Inductive Switching:

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{fi}}=25 \mathrm{~ns}(\mathrm{Typ}) @ 100^{\circ} \mathrm{C} \\
& \mathrm{t}_{\mathrm{c}}=50 \mathrm{~ns}(\mathrm{Typ}) @ 100^{\circ} \mathrm{C} \\
& \mathrm{t}_{\mathrm{sv}}=1 \mu \mathrm{~s}(\mathrm{Typ}) @ 100^{\circ} \mathrm{C}
\end{aligned}
$$

- Ultrafast FBSOA Specified
- $100^{\circ} \mathrm{C}$ Performance Specified for:

RBSOA
Inductive Load Switching
Saturation Voltages
Leakages

MAXIMUM RATINGS

Rating	Symbol	MJ16110	MJW16110	Unit
Collector-Emitter Sustaining Voltage	$\mathrm{V}_{\text {CEO(sus) }}$	400		Vdc
Collector-Emitter Breakdown Voltage	$\mathrm{V}_{\text {CES }}$	650		Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {Ebo }}$	6		Vdc
$\begin{array}{r} \hline \text { Collector Current - Continuous } \\ \text { - Pulsed (1) } \end{array}$	$\begin{gathered} \mathrm{I}_{\mathrm{C}} \\ \mathrm{I}_{\mathrm{CM}} \end{gathered}$	$\begin{aligned} & 15 \\ & 20 \end{aligned}$		Adc
Base Current - Continuous - Pulsed (1)	$\begin{gathered} \mathrm{I}_{\mathrm{B}} \\ \mathrm{I}_{\mathrm{BM}} \end{gathered}$	$\begin{aligned} & 10 \\ & 15 \end{aligned}$		Adc
Total Power Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ @ $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$ Derated above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{gathered} 175 \\ 100 \\ 1 \end{gathered}$	$\begin{gathered} 135 \\ 54 \\ 1.09 \end{gathered}$	Watts W/ ${ }^{\circ} \mathrm{C}$
Operating and Storage Temperature	$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$	-65 to 200	-55 to 150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Thermal Resistance - Junction to Case	$\mathrm{R}_{\text {өJC }}$	1	0.92	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Lead Temperature for Soldering Purposes $1 / 8^{\prime \prime}$ from Case for 5 Seconds	T_{L}		275	${ }^{\circ} \mathrm{C}$

MJ16110* MJW16110*
*Not Recommended for New Design

POWER TRANSISTORS 15 AMPERES 400 VOLTS 175 AND 135 WATTS

(1) Pulse Test: Pulse Width $=5 \mathrm{~ms}$, Duty Cycle $\leq 10 \%$.

MJ16110 MJW16110

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS (1)					
Collector-Emitter Sustaining Voltage (Table 1) ($\left.\mathrm{I}_{\mathrm{C}}=20 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{\text {CEO(sus) }}$	400	-	-	Vdc
Collector Cutoff Current $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CE}}=650 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{BE}(\text { off })}=1.5 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=650 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{BE} \text { (off })}=1.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right) \end{aligned}$	ICEV	-	-	$\begin{gathered} 100 \\ 1000 \end{gathered}$	$\mu \mathrm{Adc}$
Collector Cutoff Current ($\mathrm{V}_{\mathrm{CE}}=650 \mathrm{Vdc}, \mathrm{R}_{\mathrm{BE}}=50 \Omega$, $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$)	ICER	-	-	1000	$\mu \mathrm{Adc}$
Emitter-Base Leakage ($\mathrm{V}_{\mathrm{EB}}=6 \mathrm{Vdc}$, $\left.\mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{I}_{\text {ebo }}$	-	-	10	$\mu \mathrm{Adc}$

ON CHARACTERISTICS (1)

$\begin{aligned} & \text { Collector-Emitter Saturation Voltage } \\ & \quad\left(I_{C}=5 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.5 \mathrm{Adc}\right) \\ & \left(I_{C}=10 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=1.2 \mathrm{Adc}\right) \\ & \left(I_{C}=10 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=2 \mathrm{Adc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=2 \mathrm{Adc}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right) \end{aligned}$	$\mathrm{V}_{\text {CE(sat) }}$		$\begin{aligned} & 0.3 \\ & 0.7 \\ & 0.3 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 2.0 \\ & 1.0 \\ & 1.5 \end{aligned}$	Vdc
$\begin{aligned} & \text { Base-Emitter Saturation Voltage } \\ & \quad\left(I_{C}=10 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=2 \mathrm{Adc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=2 \mathrm{Adc}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right) \end{aligned}$	$V_{B E \text { (sat) }}$	-	1.2 1.2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	Vdc
DC Current Gain ($\mathrm{I}_{\mathrm{C}}=15 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=5 \mathrm{Vdc}$)	$\mathrm{h}_{\text {FE }}$	6	12	20	-

DYNAMIC CHARACTERISTICS

Dynamic Saturation	$\mathrm{V}_{\mathrm{CE}(\text { dsat })}$	See Figures 11, 12, and 13		V	
Output Capacitance $\left(\mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}_{\text {test }}=1 \mathrm{kHz}\right)$	C_{ob}	-	-	400	pF

SWITCHING CHARACTERISTICS

Inductive Load (Table 1)							
Storage	$\begin{aligned} & I_{\mathrm{C}}=10 \mathrm{~A}, \mathrm{I}_{\mathrm{B} 1}=1 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{BE}(\text { off })}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CE}(\mathrm{pk})}=250 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	$\mathrm{t}_{\text {sv }}$	-	700	1500	ns
Crossover			t_{c}	-	45	150	
Fall Time			t_{fi}	-	20	75	
Storage		$\mathrm{T}_{J}=100^{\circ} \mathrm{C}$	$\mathrm{t}_{\text {sv }}$	-	1000	2000	
Crossover			t_{c}	-	50	200	
Fall Time			t_{fi}	-	25	125	
Resistive Load (Table 2)							
Delay Time	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=10 \mathrm{~A}, \mathrm{I}_{\mathrm{B} 1}=1 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{CC}}=250 \mathrm{~V}, \\ & \mathrm{PW}=30 \mu \mathrm{~s}, \\ & \text { Duty Cycle }=\leq 2 \% \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{B} 2}=2 \mathrm{~A}, \\ & \mathrm{R}_{\mathrm{B} 2}=4 \Omega \end{aligned}$	t_{d}	-	15	-	ns
Rise Time			tr_{r}	-	330	-	
Storage Time			t_{s}	-	800	-	
Fall Time			t_{f}	-	110	-	
Storage Time		$\mathrm{V}_{\mathrm{BE} \text { (off) }}=5 \mathrm{~V}$	$\mathrm{t}_{\text {s }}$	-	500	-	
Fall Time			t_{f}	-	250	-	

(1) Pulse Test: Pulse Width $=300 \mu \mathrm{~s}$, Duty Cycle $\leq 2 \%$.

MJ16110 MJW16110

TYPICAL STATIC CHARACTERISTICS

Figure 1. DC Current Gain

Figure 3. Collector-Emitter Saturation Region

Figure 2. Collector-Emitter Saturation Voltage

Figure 4. Base-Emitter Saturation Region

Figure 5. Capacitance

MJ16110 MJW16110

TYPICAL INDUCTIVE SWITCHING CHARACTERISTICS

$$
\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}=10, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CE}(\mathrm{pk})}=250 \mathrm{~V}
$$

Figure 6. Storage Time

Figure 7. Crossover Time

Figure 8. Fall Time

Figure 9. Inductive Switching Measurements

Figure 10. Peak Reverse Base Current

MJ16110 MJW16110

Table 1. Inductive Load Switching

Table 2. Resistive Load Switching

V_{CC}	250 Vdc
R_{L}	25Ω
I_{C}	10 A
I_{B}	1 A

*Tektronix AM503 P6302 or Equivalent

V_{CC}	250 V
I_{C}	10 A
$\mathrm{I}_{\mathrm{B} 1}$	1.0 A
$\mathrm{I}_{\mathrm{B} 2}$	Per Spec
$\mathrm{R}_{\mathrm{B} 1}$	15Ω
$\mathrm{R}_{\mathrm{B} 2}$	Per Spec
R_{L}	25Ω

Figure 11. Definition of Dynamic Saturation Measurement

DYNAMIC SATURATION VOLTAGE

For bipolar power transistors low DC saturation voltages are achieved by conductivity modulating the collector region. Since conductivity modulation takes a finite amount of time, DC saturation voltages are not achieved instantly at turn-on. In bridge circuits, two transistor forward converters, and two transistor flyback converters dynamic saturation characteristics are responsible for the bulk of dynamic losses. The MJ16110 has been designed specifically to minimize these losses. Performance is roughly four times better than the original version of MJ16010.

From a measurement point of view, dynamic saturation voltage is defined as collector-emitter voltage at a specific point in time after $I_{B 1}$ has been applied, where $t=0$ is the 90% point on the $\mathrm{I}_{\mathrm{B} 1}$ rise time waveform, This definition is illustrated in Figure 11. Performance data was taken in the circuit that is shown in Figure 13. The 24 volt rail allows a Tektronix 2445 or equivalent scope to operate at 1 volt per division without input amplifier saturation.

Dynamic saturation performance is illustrated in Figure 12. The MJ16110 reaches DC saturation levels in approximately $2 \mu \mathrm{~s}$, provided that sufficient base drive is provided. The dependence of dynamic saturation voltage upon base drive suggests a spike of $\mathrm{I}_{\mathrm{B} 1}$ at turn-on to minimize dynamic saturation losses, and also avoid overdrive at turn-off. However, in order to simulate worst case conditions the guaranteed dynamic saturation limits in this data sheet are specified with a constant level of $\mathrm{I}_{\mathrm{B} 1}$.

Figure 12. Dynamic Saturation Voltage

Figure 13. Dynamic Saturation Test Circuit

MJ16110 MJW16110

Figure 15. Reverse Bias Safe Operating Area

Figure 16. Switching Safe Operating Area

MJ16110 MJW16110

Figure 17. Power Derating

Figure 18. Thermal Response

SAFE OPERATING AREA INFORMATION FORWARD BIAS

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_{C}-V_{C E}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data in Figure 14 is based on $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$; $\mathrm{T}_{\mathrm{J}(\mathrm{pk})}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $\mathrm{T}_{\mathrm{C}} \geq 25^{\circ} \mathrm{C}$. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 14 may be found at any case temperature by using the appropriate curve on Figure 17.
$\mathrm{T}_{\mathrm{J}(\mathrm{pk})}$ may be calculated from the data in Figure 18. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

REVERSE BIAS

For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base-to-emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Biased Safe Operating Area and represents the voltage-current condition allowable during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 15 gives the RBSOA characteristics.

SWITCHMODE DESIGN CONSIDERATIONS FBSOA

Allowable dc power dissipation in bipolar power transistors decreases dramatically with increasing collector-emitter voltage. A transistor which safely dissipates 100 watts at 10 volts will typically dissipate less than 10 watts at its rated $\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}(\mathrm{sus})}$. From a power handling point of view, current and voltage are not interchangeable (see Application Note AN875).

TURN-ON

Safe turn-on load line excursions are bounded by pulsed FBSOA curves. The 10μ s curve applies for resistive loads, most capacitive loads, and inductive loads that are clamped by standard or fast recovery rectifiers. Similarly, the 100 ns
curve applies to inductive loads which are clamped by ultra-fast recovery rectifiers, and are valid for turn-on crossover times less than 100 ns (AN952).

At voltages above 75% of $\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}(\text { sus })}$, it is essential to provide the transistor with an adequate amount of base drive VERY RAPIDLY at turn-on. More specifically, safe operation according to the curves is dependent upon base current rise time being less than collector current rise time. As a general rule, a base drive compliance voltage in excess of 10 volts is required to meet this condition (see Application Note AN875).

TURN-OFF

A bipolar transistor's ability to withstand turn-off stress is dependent upon its forward base drive. Gross overdrive violates the RBSOA curve and risks transistor failure. For this reason, circuits which use fixed base drive are more likely to fail at light loads due to heavy overdrive (see Application Note AN875).

OPERATION ABOVE $\mathbf{V}_{\text {(BR)CEO(sus) }}$

When bipolars are operated above collector-emitter breakdown, base drive is crucial. A rapid application of adequate forward base current is needed for safe turn-on, as is a stiff negative bias needed for safe turn-off. Any hiccup in the base-drive circuitry that even momentarily violates either of these conditions will likely cause the transistor to fail. Therefore, it is important to design the driver so that its output is negative in the absence of anything but a clean crisp input signal (see Application Note AN952).

RBSOA

Reversed Biased Safe Operating Area has a first order dependency on circuit configuration and drive parameters. The RBSOA curves in this data sheet are valid only for the conditions specified. For a comparison of RBSOA results in several types of circuits (see Application Note AN951).

DESIGN SAMPLES

Transistor parameters tend to vary much more from wafer lot to wafer lot, over long periods of time, than from one device to the next in the same wafer lot. For design evaluation it is advisable to use transistors from several different date codes.

BAKER CLAMPS

Many unanticipated pitfalls can be avoided by using Baker Clamps. MUR105 and MUR170 diodes are recommended for base drives less than 1 amp . Similarly, MUR405 and MUR470 types are well-suited for higher drive requirements (see Article Reprint AR131).

MJ16110 MJW16110

PACKAGE DIMENSIONS

CASE 1-07
TO-204AA
(FORMERLY TO-3)
ISSUE Z

notes:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH
3. ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO-204AA OUTLINE SHALL APPLY.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	1.550 REF		39.37 REF	
B	---	1.050	---	26.67
C	0.250	0.335	6.35	8.51
D	0.038	0.043	0.97	1.09
E	0.055	0.070	1.40	1.77
G	0.430 BSC		10.92 BSC	
H	0.215 BSC		5.46 BSC	
K	0.440	0.480	11.18	12.19
L	0.665 BSC		16.89 BSC	
N	---	0.830	---	21.08
Q	0.151	0.165	3.84	4.19
U	1.187 BSC		30.15 BSC	
V	0.131	0.188	3.33	4.77

STYLE 1:
PIN 1. BASE
2. EMITTER

CASE: COLLECTOR

MJ16110 MJW16110

PACKAGE DIMENSIONS

TO-247
CASE 340F-03
ISSUE G

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	20.40	20.90	0.803	0.823
B	15.44	15.95	0.608	0.628
C	4.70	5.21	0.185	0.205
D	1.09	1.30	0.043	0.051
E	1.50	1.63	0.059	0.064
F	1.80	2.18	0.071	0.086
G	5.45 BSC		0.215 BSC	
H	2.56	2.87	0.101	0.113
J	0.48	0.68	0.019	0.027
K	15.57	16.08	0.613	0.633
L	7.26	7.50	0.286	0.295
P	3.10	3.38	0.122	0.133
Q	3.50	3.70	0.138	0.145
R	3.30	3.80	0.130	
U	5.30 BSC	0.150		
V	3.05	3.40	0.209	

MJ16110 MJW16110

SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.

Abstract

ON Semiconductor and Irademarks of Semiconductor Components industries, LLC (SCILLC). SCILLC reserves the right to make changes SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any paricular including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support
German Phone: (+1) 303-308-7140 (Mon-Fri 2:30pm to 7:00pm CET) Email: ONlit-german@hibbertco.com
French Phone: (+1) 303-308-7141 (Mon-Fri 2:00pm to 7:00pm CET) Email: ONlit-french@hibbertco.com
English Phone: (+1) 303-308-7142 (Mon-Fri 12:00pm to 5:00pm GMT) Email: ONlit@hibbertco.com
EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:
Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST) Email: ONlit-spanish@hibbertco.com
Toll-Free from Mexico: Dial 01-800-288-2872 for Access then Dial 866-297-9322
ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support
Phone: 1-303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong \& Singapore: 001-800-4422-3781
Email: ONlit-asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031
Phone: 81-3-5740-2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.

