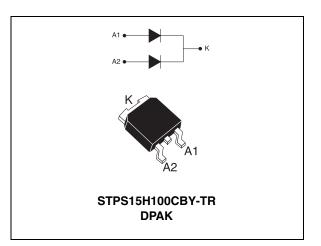


STPS15H100C-Y

Automotive high voltage power Schottky rectifier


Features

- Negligible switching losses
- Low leakage current
- Good trade off between leakage current and forward voltage drop
- Low thermal resistance
- Avalanche capability specified
- AEC-Q101 qualified

Description

Dual center tab Schottky rectifier suited for switched mode power supply and high frequency DC to DC converters.

Packaged in DPAK, this device is intended for use in high frequency inverters in automotive market.

Table 1. Device summary

Symbol	Value
I _{F(AV)}	2 x 7.5 A
V _{RRM}	100 V
T _{j (max)}	175 °C
V _{F(max)}	0.67 V

1 Characteristics

Paramete	Value	Unit			
Repetitive peak reverse voltage			100	V	
Forward rms current			10	А	
Average forward ourrest	T _c = 135 °C	Per diode	7.5	•	
I _{F(AV)} Average forward current	δ = 0.5	= 0.5 Per device		A	
Surge non repetitive forward current	t _p = 10 ms si	nusoidal	75	А	
Peak repetitive reverse current	t _p = 2 μs squ	are F= 1 kHz	1	А	
Repetitive peak avalanche power	$t_p = 1 \ \mu s \ T_j$	= 25 °C	6600	W	
Storage temperature range	- 65 to + 175	°C			
Operating junction temperature ⁽¹⁾ ran	-40 to +175	°C			
Critical rate of rise of reverse voltage			10000	V/µs	
	Repetitive peak reverse voltage Forward rms current Average forward current Surge non repetitive forward current Peak repetitive reverse current Repetitive peak avalanche power Storage temperature range Operating junction temperature ⁽¹⁾ ran	Forward rms currentAverage forward current $T_c = 135 \ ^{\circ}C$ $\delta = 0.5$ Surge non repetitive forward current $t_p = 10 \ ^{\circ}ms \ ^{\circ}ms$ Peak repetitive reverse current $t_p = 2 \ ^{\circ}\mu \ ^{\circ}ms \ ^{\circ}ms$ Repetitive peak avalanche power $t_p = 1 \ ^{\circ}\mu \ ^{\circ}ms \ ^{\circ}ms$ Storage temperature rangeOperating junction temperature $^{(1)}$ range	$\begin{array}{c} \mbox{Repetitive peak reverse voltage} \\ \hline \mbox{Forward rms current} \\ \mbox{Average forward current} & \begin{tabular}{c c c c c } \hline T_c = 135 \ ^\circ C & \end{tabular} \\ \hline \mbox{Average forward current} & \end{tabular} \\ \hline \mbox{Average forward current} & \end{tabular} \\ \hline \mbox{Average forward current} & \end{tabular} \\ \hline \mbox{Surge non repetitive forward current} & \end{tabular} \\ \hline \mbox{Surge non repetitive forward current} & \end{tabular} \\ \hline \mbox{Peak repetitive reverse current} & \end{tabular} \\ \hline \mbox{Peak repetitive peak avalanche power} & \end{tabular} \\ \hline \mbox{Repetitive peak avalanche power} & \end{tabular} \\ \hline \mbox{Storage temperature range} \\ \hline \end{tabular} \\ \hline$	Repetitive peak reverse voltage100Forward rms current10T_c = 135 °CPer diode7.5Average forward currentT_c = 135 °CPer device15Surge non repetitive forward current $t_p = 10 \text{ ms sinusoidal}$ 75Peak repetitive reverse current $t_p = 2 \mu \text{s square F= 1 kHz}$ 1Repetitive peak avalanche power $t_p = 1 \mu \text{s T}_j = 25 °C$ 6600Storage temperature range-65 to + 175-40 to +175	

Table 2. Absolute Ratings (limiting values, per diode)

1. $\frac{dPtot}{dT_j} < \frac{1}{Rth(j-a)}$ condition to avoid thermal runaway for a diode on its own heatsink

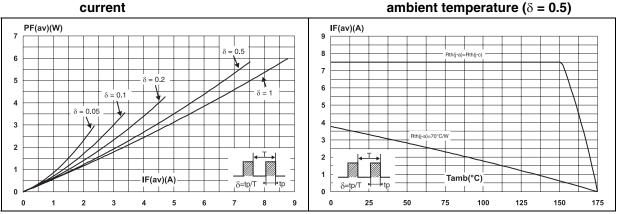
Table 3.Thermal resistance

Symbol	Parameter	Value	Unit	
P	Junction to case	Per diode	4	
R _{th(j-c)}		Total	2.4	°C/W
R _{th(c)}	Coupling	0.7		

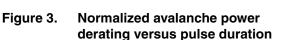
When the diodes 1 and 2 are used simultaneously :

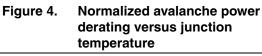
 ΔT_{i} (diode 1) = P(diode1) x R_{th(i-c)}(Per diode) + P(diode 2) x R_{th(c)}

Table 4.	Static electrical characteristics (per diode)
----------	---


Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
I _B ⁽¹⁾	Reverse leakage	T _j = 25 °C	V _B = V _{BBM}			3	μA
'R`	^I R ^(*) current	T _j = 125 °C	VR = VRRM		1.3	4	mA
	T _j = 25 °C	I _F = 7.5 A			0.8		
	V _F (⁽¹⁾) Forward voltage drop	T _j = 125 °C	I _F = 7.5 A		0.62	0.67	
$\chi_{(1)}$		T _j = 25 °C	I _F = 12 A			0.85	v
VF(` ')		T _j = 125 °C	I _F = 12 A		0.68	0.73	v
		T _j = 25 °C	l _F = 15 A			0.89	
		T _j = 125 °C	l _F = 15 A		0.71	0.76	

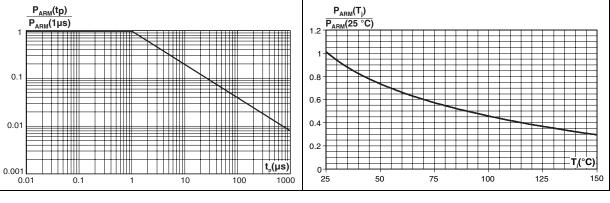
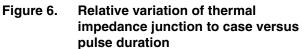
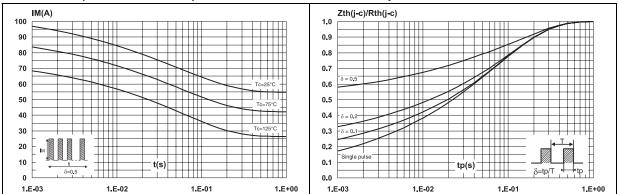
1. Pulse test: tp = 380 μ s, δ < 2%


To evaluate the conduction losses use the following equation: P = 0.58 x $I_{F(AV)}$ + 0.012 ${I_F}^2_{(RMS)}$



Average forward current versus

Figure 1. Conduction losses versus average Figure 2. current

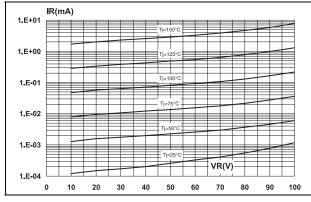

Figure 5. Non repetitive surge peak forward current versus overload duration (maximum values)

Figure 7. Reverse leakage current versus reverse voltage applied (typical values)

Figure 9. Forward voltage drop versus forward current

Figure 8. Junction capacitance versus reverse voltage applied (typical values)

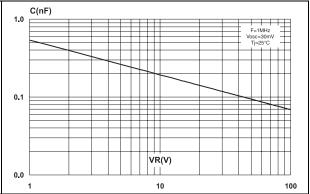
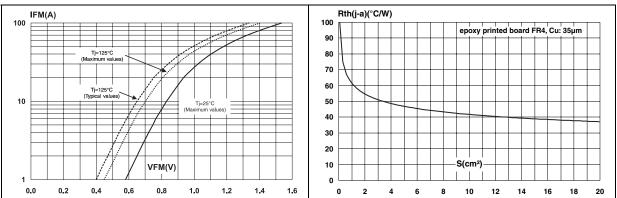
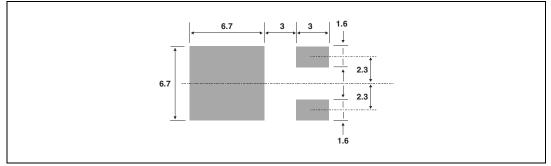



Figure 10. Thermal resistance junction to ambient versus copper surface under tab

57

2 Package information


- Epoxy meets UL94,V0
- Lead-free packages

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: <u>www.st.com</u>. ECOPACK[®] is an ST trademark.

Table 5. DPAK dimensions

		Dimensions			
	Ref.	Millim	Millimeters Inc		
		Min.	Max.	Min.	Max.
	Α	2.20	2.40	0.086	0.094
Ę → A ←	A1	0.90	1.10	0.035	0.043
		0.03	0.23	0.001	0.009
	В	0.64	0.90	0.025	0.035
	B2	5.20	5.40	0.204	0.212
	С	0.45	0.60	0.017	0.023
	C2	0.48	0.60	0.018	0.023
	D	6.00	6.20	0.236	0.244
	E	6.40	6.60	0.251	0.259
0.60 MIN.	G	4.40	4.60	0.173	0.181
1	Н	9.35	10.10	0.368	0.397
		0.80 typ.		0.031 typ.	
	L4	0.60	1.00	0.023	0.039
	V2	0°	8°	0°	8°

Figure 11. Footprint (dimensions in mm)

3 Ordering information

Table 6.Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
STPS15H100CBY-TR	S15H100Y	DPAK	0.30 g	75	Tape and reel

4 Revision history

Table 7.Document revision history

Date	Revision	Changes
04-Nov-2011	1	Initial release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

