TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

TA8157AF,TA8157AFN

Stereo Headphone Power Amplifier (1.5V USE)

The TA8157AF and TA8157AFN are developed for play-back stereo headphone equipments at low voltage operation (1.5V use). Those are built in bass boost function.

Features

- OCL (output condenser less)
- Built-in ripple filter
- Output power (V_{CC} = 1.5V, f = 1kHz, THD = 10%, R_L = 16 Ω) P₀ = 9mW (typ.)
- Voltage gain: GV = 24dB (typ.)
- Built-in boost amplifier
- Built-in power switch
- Built-in muting circuit
- Low quiescent supply current (Ta = 25°C) I_{CCQ} = 8mA (typ.)
- Excellent ripple rejection ratio: RR = 55dB (typ.)
- Low noise: $V_{no} = 25\mu V_{rms}$ (typ.)
- Operating supply voltage range (Ta = 25°C) V_{CC} (opr) = 0.9~2.2V

Weight

SSOP24-P-300-1.00: 0.32g (typ.) SSOP24-P-300-0.65A: 0.14g (typ.)

Block Diagram

Terminal Explanation (terminal voltage: Typical terminal voltage at no signal with test circuit, V_{CC} = 1.2V, Ta = 25°C)

Terminal		Function	Internal Circuit	Terminal Voltage
No.	Name			(V)
1	BST SW	Boost amplifier on / off switch (synchronized with equalizer circuit) V _{CC} / OPEN: BST amp. ON GND: BST amp. OFF		_
2	EQA	Equalizer circuit		
9	EQB	On resistance: 60Ω (typ.)		
4	Vref	Reference voltage		0.75
5	INA	Input of power amplifier (This terminal is common with		0.75
(INB	Input of adder ampliner.		
3	NFA	NF of power amplifier		0.75
8	NFB			
20	OUTA		<u>30kΩ</u>	0.6
18	OUT _B	Output of power ampliner	2kΩ VREF	0.0
6	PRE GND	_	_	0
10	MT SW	Muting switch for power amplifier V _{CC} : Power amp. ON GND / OPEN: Power amp. OFF		_
11	PW SW	Power switch V _{CC} : Power ON GND / OPEN: Power OFF		_

Terminal		Function		Terminal
No.	Name			(V)
12	RF IN	Ripple filter terminal	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	1.2
13	RF OUT	Output of ripple filter Ripple filter circuit supplies V _{REF} circuit, adder amplifier and boost amplifier with power source.		1.13
14	COMP	Phase-compensation terminal for a ripple filter circuit		0.7
15	Base	Base biasing terminal of transistor for ripple filter		0.5
16	V _{CC}	_	—	1.2
17	PW GND	_	_	0
19	OUT _C	Output of center amplifier	24 PWC 19	0.6
24	IN _C	Input of center amplifier	<u>30kΩ</u> 1.8kΩ V _{REF}	0.75
21	ADD OUT	Output of adder amplifier Input of adder amplifier is common with input of power amplifier.	5 το PWA ADDA 30kΩ VREF 2kΩ ADDB C 3472 C 347	0.6

Terminal		Function	Internal Circuit	Terminal Voltage
INO.	Name			(V)
22	BST IN	Input of boost amplifier		0.75
23	BST OUT	Output of boost amplifier (controlled by boost switch) BST ON: BST amp. ON BST OFF: BST amp. OFF (cut off input signal of BST amp.)	$\begin{array}{c} 22 \\ \hline \\ 30k\Omega \\ 2k\Omega \\ \end{array}$	0.6

Application Note

(1) PW SW

It is necessary to connect an external pull-down resistor with terminal PW SW (pin(11)), in case that this IC is turned on due to external noise etc.

(2) MT SW

The leak current flows through the terminal of MT SW (pin(10)), in case that this terminal is connected with V_{CC} line independently, even though this IC is off-mode (the terminal of PW SW (pin(11)) is off-mode). It is necessary to connect an external pull-down resistor with terminal MT SW, in case that this IC is turned on due to external noise etc.

(3) BST SW

The leak current never flows through the terminal of BST SW (pin(1)) even though this terminal is at any condition, because the ripple filter circuit supplies the BST SW circuit with power source. The terminal of BST SW should not be applied higher voltage than VCC, to prevent IC from destruction. It is necessary to connect an external pull-up resistor with terminal BST SW, in case that this IC doesn't operate normally due to external noise etc.

In case that boost amplifier is on, BST SW terminal should be applied $V_{CC} \sim (V_{CC}-0.3V)$.

(4) Input of amplifier

Each input signal should be applied through a condenser. In case that DC current or DC voltage is applied to each amplifier, the internal circuit has unbalance and the each amplifier doesn't operate normally. It is advised that input signal refer to voltage of V_{REF} , in order to reduce a pop sound.

(5) Ripple filter

It is necessary to connect a transistor for ripple filter, because this IC doesn't have transistor for ripple filter. Care should be taken to stabilize the ripple filter circuit, because the ripple filter circuit supplies V_{REF} circuit, adder amplifier and boost amplifier with power source.

Maximum Ratings (Ta = 25°C)

Charact	eristic	Symbol	Rating	Unit	
Supply voltage		V _{CC}	4.5	V	
Output current		I _{O (Peak)}	100	mA	
Power dissination	TA8157AF	P _D (Note)	400	mW	
	TA8157AFN		500		
Operating temperatu	ire	T _{opr}	-25~75	ŝ	
Storage temperature)	T _{stg}	-55~150	0	

(Note) Derated above Ta = 25°C in the proportion of 3.2mW / °C for TA8157AF, and of 4mW / °C for TA8157AFN.

Electrical Characteristics

Unless Otherwise Specified : V_{CC} = 1.2V, R_L = 16 Ω , R_g = 600 Ω , f = 1kHz, Ta = 25°C SW₁: a, SW₂: a, SW₃: b, SW₄: a, SW₅: a SW₆: a, SW₇: ON, SW₈: OPEN

Characteristic		Symbol	Test Cir– cuit	Test Condition	Min.	Тур.	Max.	Unit
		I _{CC1}		Power OFF, SW ₁ : b SW ₂ : b	_	0.1	5	μA
Quie	scent supply current	I _{CC2}	1	Power amp. OFF, SW ₂ : b	—	2.4	4.0	m۸
		I _{CC3}		V _{in} = 0	—	8	11.5	ma
	Voltage gain 1	G _{V1}	2	$V_{o(A)} = V_{o(B)} = -22 dBV$	22	24	26	- dB - mW
	Channel balance	CB1	2		_	0	1.5	
Power amplifier stage	Output power 1	P _{o1}		V _{CC} = 1.5V THD (A) = THD (B) = 10%	5	9	-	
	Output power 2	P _{o2}	2	$V_{CC} = 1.5V$ THD (A) = THD (B) = 10% V_{in} (A) = V_{in} (B) = $-V_{in}$ (C) f = 100Hz, * BTL operation SW ₃ : a, SW ₅ : b	8	14	_	
	Total harmonic distortion	THD	2	P _{o (A)} = P _{o (B)} = 1mW	_	0.6	1	%
	Output noise voltage	V _{no}	2	BPF = 20Hz~20kHz, SW ₄ : b	_	25	40	μV _{rms}
	Cross talk	СТ	2	Vo = -22dBV, SW4: b	35	42	_	
	Ripple rejection ratio	RR1	2	V _{CC} = 1.0V, f _r = 100Hz V _r = -32dBV, SW ₇ : OPEN	45	55	_	dB
	Muting attenuation	ATT1	2	V _o = −22dBV, SW ₂ : a→b		73	_	

Characteristic		Symbol	Test Cir– cuit	Test Condition	Min.	Тур.	Max.	Unit
Bass	ADD amp. voltage gain	G _{V2}	2	$V_{in (A)} = V_{in (B)}, R_L = 12k\Omega$ $V_0 (ADD) = -22dBV$ SW3: a / b	15	17.5	20	dB
	ADD amp. maximum output voltage	V _{om2}	2	V _{in (A)} = V _{in (B)} , R _L = 12kΩ THD (ADD) = 1%, SW ₃ : a / b	80	130	_	mV _{rms}
function stage	BST amp. voltage gain	G _{V3}	2	$V_0 = -37 dBV, R_L = 16 k\Omega$ SW ₆ : b	14	16.5	19	dB
	BST amp. maximum output voltage	V _{om3}	2	THD (BST) = 3%, R _L = 16kΩ SW ₆ : b	55	90	_	mV _{rms}
	BST amp. attenuation	ATT3	2	V _o = –32dBV, SW ₃ : a→b SW ₆ : b	_	73	_	dB
Ripple filte	r output voltage	V _{RF OUT}	2	V _{CC} = 1V, I _{RF} = 20mA	0.9	0.93		V
Ripple rejection ratio		RR4	2	V _{CC} = 1V, I _{RF} = 20mA f _r = 100Hz, V _r = -37dBV SW ₇ : OPEN	35	43	_	dB
Equalizer on resistance		R _{ON}	1	I _{EQ} = 100μΑ, SW ₃ : a SW ₈ : ON	_	60	_	Ω
Power	On current	I ₁₁	1	$V_{CC} = 0.9V, V_4 \ge 0.5V$ SW ₁ : c, SW ₂ : b	5			μΑ
switch	Off voltage	V ₁₁	1	$V_{CC} = 0.9V, V_4 \le 0.2V$ SW ₁ : d, SW ₂ : b	0	_	0.3	v
Mute	Off current	I ₁₀	1	V _{CC} = 0.9V, I _{CC} ≥ 4.5mA SW ₂ : c	5			μΑ
switch	On voltage	V ₁₀	1	$V_{CC} = 0.9V, I_{CC} \le 3.5mA$ SW ₂ : d	0	_	0.3	V
Boost	Off current	I ₁	1	V _{CC} = 0.9V, I _{EQ} = 100µA V ₂ ≥ 0.7V, SW ₃ : c, SW ₈ : ON	5	_	_	μΑ
switch	On voltage	V ₁	1	$V_{CC} = 0.9V, I_{EQ} = 100\mu A$ $V_2 \le 0.2V, SW_3$: d, SW ₈ : ON	0.6	_	0.9	v

Test Circuit 1

(*) Tantalum condenser

Test Circuit 2

(*) Tantalum condenser

Characteristic Curves

Unless Otherwise Specified: $V_{CC} = 1.2V$, $R_L = 16\Omega$, $R_g = 600\Omega$, f = 1kHz, Ta = 25°C

<u>TOSHIBA</u>

40

60

 $V_{in}(A) = V_{in}(B)$

THD (ADD) = 1%

 $R_L = 12k\Omega$

40

60

80

80

Package Dimensions

SSOP24-P-300-1.00

Unit : mm

Weight: 0.32g (typ.)

Package Dimensions

Weight: 0.14g (typ.)

RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.