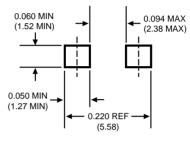
# SMAJ530 and SMAJ550

Vishay Semiconductors formerly General Semiconductor

# Surface Mount TRANSZORB® Transient Voltage Suppressors


**DO-214AC** Cathode Band (SMA) 0.065 (1.65) 0.110 (2.79) 0.100 (2.54) 0.049 (1.25) 0.177 (4.50) 0.157 (3.99) Dimensions in inches and (millimeters) 0.012 (0.305) 0.006 (0.152) 0.090 (2.29) 0.078 (1.98 0.060 (1.52) 0.008 (0.203) MAX 0.030 (0.76) 0.208 (5.28) 0.194 (4.93)

# Features

- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Protects power IC controllers such as TOPSwitch<sup>®</sup>
- Glass passivated junction
- High temperature soldering guaranteed: 250°C/10 seconds at terminals
- Excellent clamping capability
- · Available in unidirectional only

#### Steady State Power 1W Peak Pulse Power 300W Reverse Voltage 530,550V

## **Mounting Pad Layout**



# **Mechanical Data**

**Case:** JEDEC DO-214AC molded plastic body over passivated chip

**Terminals:** Solder plated, solderable per MIL-STD-750, Method 2026

**Polarity:** The band denotes the cathode, which is positive with respect to the anode under normal TVS operation

### Mounting Position: Any Weight: 0.002 oz., 0.064 g

Packaging Codes – Options (Antistatic):

- 51 1K per Bulk box, 20K/carton
- 61 1.8K per 7" plastic Reel (12mm tape), 36K/carton
- 5A 7.5K per 13" plastic Reel (12mm tape), 75K/carton

## Maximum Ratings and Thermal Characteristics TA = 25°C unless otherwise noted.

| Parameter                                                  | Symbol   | SMAJ530     | SMAJ550 | Unit |
|------------------------------------------------------------|----------|-------------|---------|------|
| Device marking code                                        |          | HD          | SB      |      |
| Steady state power dissipation <sup>(3)</sup>              | PM(AV)   | 1.0         |         | W    |
| Peak pulse power dissipation <sup>(1)(2)(5)</sup> (Fig. 1) | Рррм     | Minimum 300 |         | W    |
| Stand-off voltage                                          | Vwm      | 477         | 495     | V    |
| Typical thermal resistance junction-to-lead                | Rejl     | 27          |         | °C/W |
| Typical thermal resistance junction-to-ambient             | Reja     | 75          |         | °C/W |
| Operating junction and storage temperature range           | TJ, TSTG | -55 to +150 |         | °C   |

## Electrical Characteristics TA = 25°C unless otherwise noted.

| Minimum breakdown voltage                | at 100μA               | V(BR) | 530     | 550 | V    |
|------------------------------------------|------------------------|-------|---------|-----|------|
| Max. clamping voltage at 400             | mA, 10/1000μs-waveform | Vc    | 760     |     | V    |
| Maximum DC reverse leakage               | e current at Vwм       | ID    | 1.0     |     | μA   |
| Typical temperature coefficient of V(BR) |                        |       | 650     |     | mV°C |
| Typical capacitance <sup>(4)</sup>       | at 0V<br>at 200V       | CJ    | 9<br>7. | -   | pF   |

**Notes:** (1) Non repetitive current pulse per Fig.3 and derated above 25°C per Fig. 2 (2) Mounted on 5.0mm<sup>2</sup> copper pads to each terminal (3) Lead temperature at  $75^{\circ}C = T_L$  (4) Measured at 1MHz

(5) Peak pulse power waveform is 10/1000µs.

# SMAJ530 and SMAJ550

Vishay Semiconductors formerly General Semiconductor

# Ratings and Characteristic Curves (TA = 25°C unless otherwise noted)

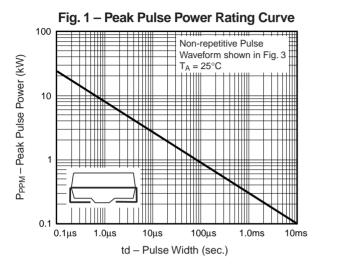
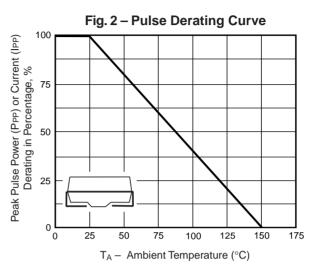




Fig. 3 – Pulse Waveform



#### 150 T\_J = 25°C tr = 10µsec PPM – Peak Pulse Current, % I<sub>RSM</sub> Pulse Width (td) is defined as the point Peak Value where the peak current IPPM decays to 50% of IPPM 100 Half Value -IPP 2 **I**PPM 50 10/1000µsec. Waveform as defined by R.E.A td 0 1.0 2.0 3.0 4.0 0 t - Time (ms)

# **Application Notes**

- Respect Thermal Resistance (PCB Layout) as the temperature coefficient also contributes to the clamping voltage.
- Select minimum breakdown voltage, so you get acceptable power dissipation and PCB tie point temperature.
- Devices with higher breakdown voltage will have a shorter conduction time and will dissipate less power.
  Clamping voltage is influenced by internal resistance design approximation is 7V per 100mA slope.
- Keep temperature of TVS lower than TOPSwitch<sup>®</sup> as a recommendation.
- Maximum current is determined by the maximum T<sub>J</sub> and can be higher than 300mA.
- Contact supplier for different clamping voltage / current arrangements.
- Minimum breakdown voltage can be customized for other applications. Contact supplier.
- TOPSwitch® is a registered trademark of Power Integrations, Inc.

