

Logic Symbol

Connection Diagrams
Pin Assignments for SOIC, SOP, SSOP, TSSOP

$\overline{O E}-1$	20
$\mathrm{D}_{0}-2$	19
$\mathrm{D}_{1}-3$	18
$\mathrm{O}_{2}-4$	17
$\mathrm{O}_{3}-5$	16
$\mathrm{D}_{4}-6$	15
$\mathrm{C}_{5}-7$	14
O_{6}-8	13
$\mathrm{C}_{7}-9$	12
GND - 10	11

Pad Assignments for DQFN

(Top View)

Pin Descriptions

Pin Names	Description
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data Inputs
LE	Latch Enable Input
$\overline{\mathrm{OE}}$	3-STATE Output Enable Input
$\mathrm{O}_{0}-\mathrm{O}_{7}$	3-STATE Latch Outputs

Truth Table

Inputs			Outputs
$\overline{\mathrm{OE}}$	LE	D	O_{n}
L	H	H	H
L	H	L	L
L	L	X	O_{0}
H	X	X	Z

$\mathrm{H}=\mathrm{HIGH}$ Volage
L = LOW Voltage
$Z=$ High Impedance
$\mathrm{X}=$ Immaterial
$\mathrm{O}_{0}=$ Previous O_{0} before HIGH-to-LOW transition of Latch Enable

Functional Description

The LCX573 contains eight D-type latches with 3-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the D_{n} inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW the atches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-STATE buffers are controlled by the Output Enable $(\overline{\mathrm{OE}})$ input. When $\overline{\mathrm{OE}}$ is LOW, the buffers are enabled. When OE is HIGH the buffers are in the high mpedance mode but this does not interfere with entering new data into the latches.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 4)				
Symbol	Parameter	Value	Conditions	Units
$\mathrm{V}_{\text {CC }}$	Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	-0.5 to +7.0		V
V_{o}	DC Output Voltage	$\begin{gathered} -0.5 \text { to }+7.0 \\ -0.5 \text { to } \mathrm{V}_{\mathrm{CC}}+0.5 \end{gathered}$	Output in 3-STATE Output in HIGH or LOW State (Note 5)	V
$I_{\text {IK }}$	DC Input Diode Current	-50	$\mathrm{V}_{1}<\mathrm{GND}$	mA
$\mathrm{T}_{\text {KK }}$	DC Output Diode Current	$\begin{aligned} & -50 \\ & +50 \\ & +50 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}<\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}} \end{aligned}$	mA
Io	DC Output Source/Sink Current	± 50		mA
ICC	DC Supply Current per Supply Pin	± 100		mA
IGND	DC Ground Current per Ground Pin	± 100		mA
TSTG	Storage Temperature	-65 to +150		${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions (Note 6)

Symbol	Parameter	Min	Max	Units
V_{CC}	Supply VoltageOperating Data Retention	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage	0	5.5	V
V_{O}	Output Voltage HIGH or LOW State 3-STATE	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}} \\ 5.5 \end{gathered}$	V
$\overline{\mathrm{IOH}^{\prime} / \mathrm{l}_{\mathrm{OL}}}$	Output Current $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}-2.7 \mathrm{~V}$		$\begin{gathered} \pm 24 \\ \pm 12 \\ \pm 8 \end{gathered}$	mA
$\mathrm{T}_{\text {A }}$	Free-Air Operating Temperature	-40	85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Edge Rate, $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0	10	ns/V

Note 4: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
Note 5: I_{O} Absolute Maximum Rating must be observed.
Note 6: Unused (inputs or I/O's) must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units
				Min	Max	
$\overline{\mathrm{V}_{\mathrm{IH}}}$	HIGH Level Input Voltage		2.3-2.7	1.7		v
			2.7-3.6	2.0		
V_{IL}	LOW Level Input Voltage		2.3-2.7		0.7	v
			2.7-3.6		0.8	
$\overline{\mathrm{V}} \mathrm{OH}$	HIGH Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	2.3-3.6	$\mathrm{V}_{\mathrm{CC}}-0.2$		v
		$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$	2.3	1.8		
		$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.7	2.2		
		$\mathrm{IOH}=-18 \mathrm{~mA}$	3.0	2.4		
		$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	3.0	2.2		
$\overline{\mathrm{V} \text { OL }}$	LOW Level Output Voltage	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	2.3-3.6		0.2	v
		IOL $=8 \mathrm{~mA}$	2.3		0.6	
		$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$	2.7		0.4	
		$\mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$	3.0		0.4	
		$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$	3.0		0.55	
I	Input Leakage Current	$0 \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$	2.3-3.6		± 5.0	$\mu \mathrm{A}$
I_{OZ}	3-STATE Output Leakage	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	2.3-3.6		± 5.0	$\mu \mathrm{A}$
IofF	Power-Off Leakage Current	V_{1} or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	0		10	$\mu \mathrm{A}$

Symbol	Parameter	Conditions	v_{cc}	$\mathrm{T}_{\mathrm{A}}=-4$	${ }^{+85^{\circ} \mathrm{C}}$	Units
	Parameter	Conditions	(v)	Min	Max	Units
${ }_{\text {cc }}$	Quiescent Supply Current	$\mathrm{V}_{1}=\mathrm{V}_{\text {cC }}$ or GND	2.3-3.6		10	$\mu \mathrm{A}$
		$3.6 \mathrm{~V} \leq \mathrm{V}_{1}, \mathrm{~V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$ (Note 7)	2.3-3.6		± 10	
$\Delta_{\text {cc }}$	Increase in $\mathrm{I}_{\text {cc }}$ per Input	$\mathrm{V}_{\mathrm{HH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$	2.3-3.6		500	$\mu \mathrm{A}$

AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=500 \Omega$						Units
		$\begin{gathered} \mathrm{V}_{\mathrm{Cc}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{Cc}}=2.7 \mathrm{~V} \\ & \hline \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{gathered}$		
		Min	Max	Min	Max	Min	Max	
$\overline{t_{\text {PHL }}}$ $t_{\text {PLH }}$	Propagation Delay $D_{n} \text { to } O_{n}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 9.6 \\ & 9.6 \end{aligned}$	ns
$t_{\text {PHL }}$ $t_{\text {PLH }}$	Propagation Delay LE to O_{n}	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\text {PZL }} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Output Enable Time	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Output Disable Time	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 7.8 \\ & 7.8 \end{aligned}$	ns
$t_{\text {s }}$	Setup Time, D_{n} to LE	2.5		2.5		4.0		ns
t_{H}	Hold Time, D_{n} to LE	1.5		1.5		2.0		ns
t_{W}	LE Pulse Width	3.3		3.3		4.0		ns
$\mathrm{t}_{\mathrm{OSHL}}$ t_{OSLH}	Output to Output Skew (Note 8)		$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$					ns

Note 8: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW ($\mathrm{t}_{\mathrm{OSHL}}$) or LOW-to-HIGH ($\mathrm{t}_{\mathrm{OSLH}}$).

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	V_{cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Units
			(V)	Typical	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Dynamic Peak $\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.6 \end{aligned}$	V
$\overline{\mathrm{V}} \mathrm{OLV}$	Quiet Output Dynamic Valley $\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline-0.8 \\ & -0.6 \end{aligned}$	V

Capacitance

Symbol	Parameter	Conditions	Typical	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=O$ pen, $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF
C_{PD}	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{f}=10 \mathrm{MHz}$	25	pF

AC LOADING and WAVEFORMS Generic for LCx Family

FIGURE 1. AC Test $\overline{\text { Circuit }}$ ($\overline{\mathrm{C}_{\mathrm{L}}}$ includes probe and jig capacitance)

Test	Switch
$\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}$	Open
$\mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\mathrm{PLZ}}$	6 V at $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{CC}} \times 2 \mathrm{at} \mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V}$
$\mathrm{t}_{\mathrm{PZH},}, \mathrm{t}_{\mathrm{PHZ}}$	GND

Waveform for Inverting and Non-Inverting Functions

Propagation Delay. Pulse Width and trec Waveforms

3-STATE Output High Enable and Disable Times for Logic

Setup Time, Hold Time and Recovery Time for Logic

 Disable Times for LogicFIGURE 2. Waveforms
(Input Characteristics; $f=1 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$)

Symbol	$\mathrm{V}_{\mathbf{C C}}$		
	$\mathbf{3 . 3 V} \pm \mathbf{0 . 3 V}$	$\mathbf{2 . 7 V}$	$\mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$
V_{mi}	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{x}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{y}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

1. Cummulative pitch for feeding holes and cavities (chip pockets) not to exceed $0.008[0.20$] over 10 pitch span.
2. Smallest allowable bending radius.
3. Thru hole inside cavity is centered within cavity.
4. Tolerance is ± 0.002 [0.05] for these dimensions on all 12 mm tapes
5. Ao and Bo measured on a plane $0.120[0.30]$ above the bottom of the pocket.
6. Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier
7. Pocket position relative to sprocket hole measured as true position of pocket. Not pocket hole
8. Controlling dimension is millimeter. Diemension in inches rounded.
REEL DIMENSIONS inches (millimeters)

Tape Size	A	B	C	D	N	W1	W2
12 mm	13.0	0.059	0.512	0.795	2.165	0.488	0.724
	(330.0)	(1.50)	(13.00)	(20.20)	(55.00)	(12.4)	(18.4)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Pb-Free 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M20D

Pb-Free 20-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241, $2.5 \times 4.5 \mathrm{~mm}$ Package Number MLP020B

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide
Package Number MSA20

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

MTC20REVD1

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
