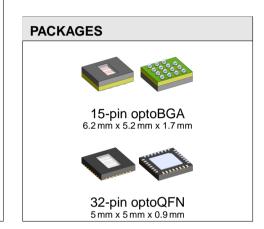
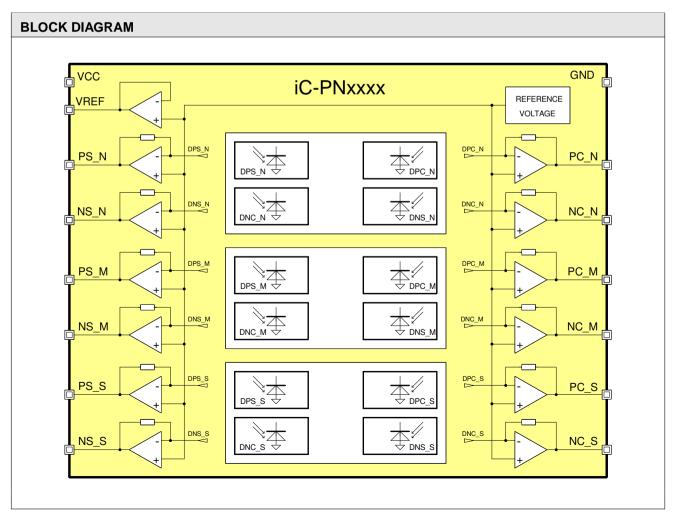
iC-PN3324 pre PHASED ARRAY NONIUS ENCODER 33-1024


Absolute position encoders


APPLICATIONS

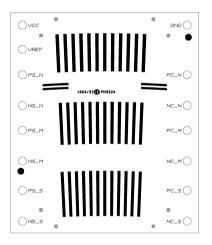
Rev A1, Page 1/7

FEATURES

Compact photosensor for high-resolution nonius scanning Phased-array design for 1023/1024/992 PPR (N/M/S channel) with excellent signal matching Reduced cross talk due to moderate track pitch Ultra low dark currents for operation to high temperature Low noise amplifiers with high transimpedance of typ. 1 M Ω Short-circuit-proof, low impedance voltage outputs for enhanced EMI tolerance Space saving optoQFN and optoBGA packages (RoHS compliant) Low power consumption from single 4.5 to 5.5 V supply Operational temperature range of -40 to +110 °C Suitable code disc: LSHC10S 33-1024N (glass 1 mm) OD \emptyset 33 mm, ID \emptyset 18.0 mm, optical radius 14.5 mm

laus

DESCRIPTION

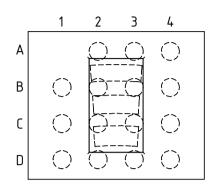

The optical encoder iC-PN features monolithically integrated photosensors arranged as a phased-array.

The transimpedance gain of typically 1 M Ω generates output signals of a few hundred millivolts already from an illumination level of 0.5 mW/cm². In most cases no additional measures must be considered to filter for noise and interferences. The spectral sensitivity range includes visible to near infrared light, with the maximum sensitivity being close to a wavelength of 680 nm.

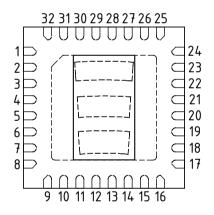
Analog nonius-scale encoders are the typical application for iC-PN. Its 3-track scanning features a phased-array of multiple photosensors each per track, generating positive and negative going sine signals, as well as positive and negative going cosine signals. An excellent matching and common mode behavior of the differential signal paths is obtained by a paired amplifier design, reducing the needs for external signal calibration to an absolute minimum.

PACKAGES INFORMATION

PAD LAYOUT (2.88 mm x 3.37 mm)


PAD FUNCTIONS No. Name Function

1	VCC	+4.55.5 V Supply Voltage
2	VREF	Reference Voltage Output
3	PS_N	N-Track Sine +
4	NS_N	N-Track Sine -
5	PS_M	M-Track Sine +
6	NS_M	M-Track Sine -
7	PS_S	S-Track Sine +
8	NS_S	S-Track Sine -
9	NC_S	S-Track Cosine -
10	PC_S	S-Track Cosine +
11	NC_M	M-Track Cosine -
12	PC_M	M-Track Cosine +
13	NC_N	N-Track Cosine -
14	PC_N	N-Track Cosine +
15	GND	Ground


All outputs are analog voltage outputs.

PIN CONFIGURATION oBGA LSH2C (6.2 mm x 5.2 mm)

PIN CONFIGURATION oQFN32-5x5 (5 mm x 5 mm)

Package qualification optoQFN32-5x5 pending.

PIN FUNCTIONS

No. Name Function

A2	VCC	+4.55.5 V Supply Voltage
A3	VREF	Reference Voltage Output
A4	GND	Ground
B1	PS_N	N-Track Sine +
B2	NS_N	N-Track Sine -
B3	NC_N	N-Track Cosine -
Β4	PC_N	N-Track Cosine +
C1	PS_M	M-Track Sine +
C2	NS_M	M-Track Sine -
C3	NC_M	M-Track Cosine -
C4	PC_M	M-Track Cosine +
D1	PS_S	S-Track Sine +
D2	NS_S	S-Track Sine -
D3	NC_S	S-Track Cosine -
D4	PC_S	S-Track Cosine +

Rev A1, Page 3/7

PIN FUNCTIONS No. Name Function

- 1 VCC +4.5..5.5 V Supply Voltage
- 2 VREF Reference Voltage Output
- 3 PS_N N-Track Sine +
- 4 NS_N N-Track Sine -
- 5 PS_M M-Track Sine +
- 6 NS_M M-Track Sine -
- 7 PS_S S-Track Sine +
- 8 NS_S S-Track Sine -
- 17 NC_S S-Track Cosine -
- 18 PC_S S-Track Cosine +
- 19 NC_M M-Track Cosine -
- 20 PC_M M-Track Cosine +
- 21 NC_N N-Track Cosine -
- 22 PC_N N-Track Cosine +
- 24 GND Ground
 - BP Backside pad (oQFN32-5x5 only): not intended as an electrical connection point; when using as shield a single link to GND is permissible.

Rev A1, Page 4/7

FHaus

ABSOLUTE MAXIMUM RATINGS

These ratings do not imply operating conditions; functional operation is not guaranteed. Beyond these ratings device damage may occur.

ltem	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
G001	VCC	Voltage at VCC		-0.3	6	V
G002	I(VCC)	Current in VCC		-20	20	mA
G003	V()	Pin Voltage, all signal outputs		-0.3	VCC + 0.3	V
G004	I()	Pin Current, all signal outputs		-20	20	mA
G005	Vd()	ESD Susceptibility, all pins	HBM, 100 pF discharged through 1.5 k Ω		2	kV
G006	Tj	Junction Temperature		-40	150	°C
G007	Ts	Chip Storage Temperature		-40	150	°C

THERMAL DATA

Item	Symbol	Parameter	Conditions				Unit
No.				Min.	Тур.	Max.	
T01	Та	Operating Ambient Temperature Range	package oBGA LSH2C	-40		110	°C
			package oQFN32-5x5*	-40		110	°C
			(extended temperature range on request)				
T02	Ts	Storage Temperature Range	package oBGA LSH2C, package oQFN32-5x5*	-40		110	°C
T03	Tpk	Soldering Peak Temperature	package oBGA LSH2C				
			tpk < 20 s, convection reflow			245	°C
			tpk < 20 s, vapor phase soldering			230	°Ĉ
			TOL (time on label) 8 h;				
			Please refer to customer information file No. 7 for details.				
T04	Tpk	Soldering Peak Temperature	package oQFN32-5x5*				
			tpk < 20 s, convection reflow			245	°C
			tpk < 20 s, vapor phase soldering			230	°C
			MSL 5A (max. floor live 24 h at 30 °C and 60 % RH);				
			Please refer to customer information file No. 7 for details.				

*) Package qualification pending.

All currents flowing into the device pins are positive; all currents flowing out of the device pins are negative.

Rev A1, Page 5/7

ELECTRICAL CHARACTERISTICS

ltem No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
	Device			I			I
001	VCC	Permissible Supply Voltage		4.5		5.5	V
002	I(VCC)	Supply Current in VCC	no load, photocurrents within linear op. range (no override)		9.5	15	mA
003	Vc()hi	Clamp-Voltage hi at all pins	I() = 4 mA			11	V
004	Vc()lo	Clamp-Voltage lo at all pins	I() = -4 mA	-1.2		-0.3	V
Photo	sensors	1					
101	λ ar	Spectral Application Range	$Se(\lambda ar) = 0.25 \times S(\lambda)max$	400		950	nm
102	λpk	Peak Sensitivity Wavelength			680		nm
103	Aph()	Radiant Sensitive Area			0.054		mm ²
104	$S(\lambda)$	Spectral Sensitivity	$\lambda_{\text{LED}} = 740 \text{nm}$		0.5		A/W
105	S(\lambda pk)max	Maximum Spectral Sensitivity	$\lambda_{\text{LED}} = \lambda pk$		0.55		A/W
106	E()mxr	Irradiance For Maximum Signal Level	$\lambda_{\text{LED}} = 740 \text{nm}$, Vout() not saturated	2.8	5.2	8.4	mW/ cm ²
Photo	current Am	olifiers	1		1		
201	lph()	Permissible Photocurrent Operat- ing Range		0		280	nA
202	η()r	Photo Sensitivity (light-to-voltage conversion ratio)	$\lambda_{LED} = 740nm$	0.2	0.3	0.5	V/µW
203	Z()	Equivalent Transimpedance Gain	Z = Vout() / Iph()	0.7	1.0	1.4	MΩ
204	TCz	Temperature Coefficient of Tran- simpedance Gain			-0.12		%/°C
209	ΔZ()pn	Transimpedance Gain Matching	P channel vs. corresponding N channel	-0.2		0.2	%
210	⊿Vout()pn	Signal Matching	no illumination, any output vs. any output	-35		35	mV
211	∆Vout()pn	Signal Matching	no illumination, P. output vs. corresponding N. output	-2.5		2.5	mV
212	fc()hi	Cut-off Frequency (-3 dB)			400		kHz
213	VNoise()	RMS Output Noise	illuminated to 500 mV signal level above dark level, 500 kHz band width		0.5		mV
Signa	l Outputs						
301	Vout()mx	Permissible Maximum Output Voltage	illumination to E()mxr, linear gain	2.45	2.72	3.02	V
302	Vout()d	Dark Signal Level	no illumination, load 20 k Ω vs. +2 V	600	770	1000	mV
303	Vout()acmx	Maximum Signal Level	Vout()acmx = Vout()mx - Vout()d	1.48	1.96	2.35	V
304	lsc()hi	Short-Circuit Current hi	load current to ground	100	420	800	μA
305	lsc()lo	Short-Circuit Current lo	load current to IC	250	480	700	μA
306	Ri()	Internal Output Resistance	f = 1 kHz	70	110	180	Ω
307	ton()	Power-On Settling Time	$VCC = 0 V \rightarrow 5 V$			100	μs
Refer	ence Voltage	e VREF					
401	VREF	Reference Voltage	I(VREF) = 0+1.6 mA	600	770	1000	mV
402	dVout()	Load Balancing	I(VREF) = 0+1.6 mA	-10		+10	mV
403	lsc()hi	Short-Circuit Current hi	load current to ground	200	420	800	μA
404	lsc()lo	Short-Circuit Current lo	load current to IC	2	4.5	10	mA

Rev A1, Page 6/7

APPLICATION CIRCUITS

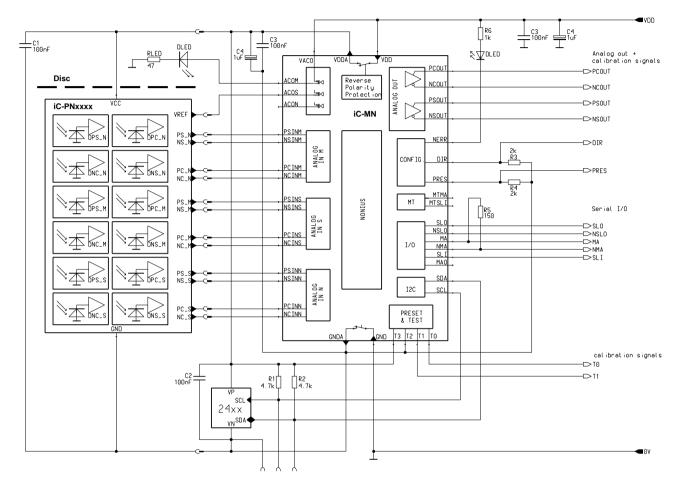


Figure 1: Application example of absolute encoder circuit.

iC-Haus expressly reserves the right to change its products and/or specifications. An info letter gives details as to any amendments and additions made to the relevant current specifications on our internet website www.ichaus.de/infoletter; this letter is generated automatically and shall be sent to registered users by email

Copying - even as an excerpt - is only permitted with iC-Haus' approval in writing and precise reference to source.

iC-Haus does not warrant the accuracy, completeness or timeliness of the specification and does not assume liability for any errors or omissions in these materials.

The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

As a general rule our developments, IPs, principle circuitry and range of Integrated Circuits are suitable and specifically designed for appropriate use in technical applications, such as in devices, systems and any kind of technical equipment, in so far as they do not infringe existing patent rights. In principle the range of use is limitless in a technical sense and refers to the products listed in the inventory of goods compiled for the 2008 and following export trade statistics issued annually by the Bureau of Statistics in Wiesbaden, for example, or to any product in the product catalogue published for the 2007 and following exhibitions in Hanover (Hannover-Messe).

We understand suitable application of our published designs to be state-of-the-art technology which can no longer be classed as inventive under the stipulations of patent law. Our explicit application notes are to be treated only as mere examples of the many possible and extremely advantageous uses our products can be put to.

iC-PN3324

PHASED ARRAY NONIUS ENCODER 33-1024

Rev A1, Page 7/7

Haus

ORDERING INFORMATION

Туре	Package	Options	Order Designation
iC-PN3324	-		iC-PN3324 chip
	32-pin optoQFN, 5 mm x 5 mm, thickness 0.9 mm		iC-PN3324 oQFN32-5x5
	15-pin optoBGA, 6.2 mm x 5.2 mm, thickness 1.7 mm		iC-PN3324 oBGA LSH2C
		Suitable code disc	
		1023/1024/992 PPR, OD \varnothing 33 mm, ID \varnothing 18.0 mm, optical radius 14.5 mm (glass 1 mm)	LSHC10S 33-1024N

preliminary

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH Am Kuemmerling 18 D-55294 Bodenheim GERMANY Tel.: +49 (61 35) 92 92-0 Fax: +49 (61 35) 92 92-192 Web: http://www.ichaus.com E-Mail: sales@ichaus.com

Appointed local distributors: http://www.ichaus.com/sales_partners