Analog Switch

The NLAST4501 is an analog switch manufactured in sub-micron silicon-gate CMOS technology. It achieves very low R_{ON} while maintaining extremely low power dissipation. The device is a bilateral switch suitable for switching either analog or digital signals, which may vary from zero to full supply voltage.

The NLAST4501 is a low voltage, TTL (low threshold) compatible device, pin for pin compatible with the MAX4501.

The Enable pin is compatible with standard TTL level outputs when supply voltage is nominal 5.0 Volts. It is also over–voltage tolerant, making it a very useful logic level translator.

- Guaranteed R_{ON} of 32 Ω at 5.5 V
- Low Power Dissipation: $I_{CC} = 2 \mu A$
- Low Threshold Enable pin TTL compatible at 5.0 Volts
- TTL version and pin for pin with NLAS4501
- Provides Voltage translation for many different voltage levels
 3.3 to 5.0 Volts, Enable pin may go as high as + 5.5 Volts
 - 1.8 to 3.3 Volts
 - 1.8 to 2.5 Volts
- Improved version of MAX4501 (at any voltage between 2 and 5.5 Volts)
- Chip Complexity: FETs = 11

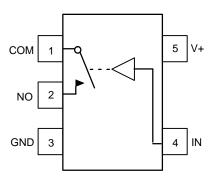


Figure 1. Pinout (Top View)

ON Semiconductor[™]

http://onsemi.com

MARKING DIAGRAMS

d = Date Code

SC–88A / SOT–353/SC–70 DF SUFFIX CASE 419A

TSOP-5/SOT-23/SC-59 DT SUFFIX CASE 483

Pin 1 d = Date Code

PIN ASSIGNMENT

Pin	Function
1	СОМ
2	NO
3	GND
4	Enable
5	V _{CC}

FUNCTION TABLE

State of Analog Switch
Off
On

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

MAXIMUM RATINGS (Note 1)

Symbol	F	Value	Unit	
V _{CC}	Positive DC Supply Voltage		-0.5 to +7.0	V
V _{IN}	Digital Input Voltage (Enable)		-0.5 to +7.0	V
V _{IS}	Analog Output Voltage (V_{NO} or V_{COM})	-0.5 to $V_{CC} $ +0.5 $$	V
I _{IK}	DC Current, Into or Out of Any Pin		±20	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
TL	Lead Temperature, 1 mm from Case f	or 10 Seconds	260	°C
TJ	Junction Temperature under Bias		+150	°C
θ_{JA}	Thermal Resistance	SC–88 TSOP–5	112 148	°C/W
PD	Power Dissipation in Still Air at 85°C	SC–88 TSOP–5	500 450	mW
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating	Oxygen Index: 30% – 35%	UL–94–VO (0.125 in)	
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	> 2000 > 100 N/A	V
I _{Latch-Up}	Latch–Up Performance	Above V _{CC} and Below GND at 85°C (Note 5)	±300	mA

1. Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Extended exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum–rated conditions is not implied.

2. Tested to EIA/JESD22-A114-A.

3. Tested to EIA/JESD22-A115-A.

4. Tested to JESD22–C101–A.

5. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V _{CC}	Positive DC Supply Voltage		2.0	5.5	V
V _{IN}	Digital Input Voltage (Enable)		GND	5.5	V
V _{IO}	Static or Dynamic Voltage Across an Off Switch		GND	V _{CC}	V
V _{IS}	Analog Input Voltage (NO, COM)		GND	V _{CC}	V
T _A	Operating Temperature Range, All Package Types		- 55	+ 125	°C
t _r , t _f	Input Rise or Fall Time, V, (Enable Input) V,	$c_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}$ $c_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}$	0 0	100 20	ns/V

DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1% BOND FAILURES

Junction Temperature °C	Time, Hours	Time, Years
80	1,032,200	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

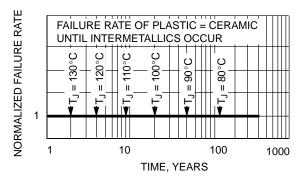


Figure 2. Failure Rate vs. Time Junction Temperature

				Guarante	ed Max Lir	nit	
Symbol	Parameter	Condition	V _{CC}	−55°C to 25°C	<85°C	<125°C	Unit
V _{IH}	Minimum High–Level Input		3.0	1.4	1.4	1.4	V
	Voltage, Enable Inputs		4.5	2.0	2.0	2.0	
			5.5	2.0	2.0	2.0	
V _{IL}	Maximum Low-Level Input		3.0	0.53	0.53	0.53	V
	Voltage, Enable Inputs		4.5	0.8	0.8	0.8	
			5.5	0.8	0.8	0.8	
I _{IN}	Maximum Input Leakage Current, Enable Inputs	$V_{IN} = 5.5 V \text{ or GND}$	0 V to 5.5 V	±0.1	±1.0	±1.0	μΑ
I _{CC}	Maximum Quiescent Supply Current (per package)	Enable and VIS = V_{CC} or GND	5.5	1.0	1.0	2.0	μΑ

DC CHARACTERISTICS - Digital Section (Voltages Referenced to GND)

DC ELECTRICAL CHARACTERISTICS – Analog Section

				Guarante	ed Max Lir	nit	
Symbol	Parameter	Condition	V _{cc}	−55°C to 25°C	<85°C	<125°C	Unit
R _{ON}	Maximum ON Resistance	$V_{IN} = V_{IH}$	3.0	45	50	55	Ω
	(Figures 8 – 12)	$V_{IS} = V_{CC}$ to GND	4.5	30	35	40	
		$I_{IS}I = \le 10.0 \text{ mA}$	5.5	25	30	35	
R _{FLAT(ON)}	ON Resistance Flatness	$V_{IN} = V_{IH}$ $I_{IS}I = \le 10.0 \text{ mA}$ $V_{IS} = 1 \text{ V}, 2 \text{ V}, 3.5 \text{ V}$	4.5	4	4	5	Ω
I _{NO(OFF)}	NO Off Leakage Current (Figure 3)	$V_{IN} = V_{IL}$ $V_{NO} = 1.0 \text{ V or } 4.5 \text{ V}$ $V_{COM} = 4.5 \text{ V or } 1.0 \text{ V}$	5.5	1	10	100	nA
I _{COM(OFF)}	COM Off Leakage Current (Figure 3)	$V_{IN} = V_{IL}$ $V_{NO} = 4.5 V \text{ or } 1.0 V$ $V_{COM} = 1.0 V \text{ or } 4.5 V$	5.5	1	10	100	nA

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ ns}$)

						G	uarant	teed M	ax Lim	nit								
								v_{cc}	- 55	°C to 2	25°C		<85°C			<125°C		
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit					
t _{ON}	Turn–On Time	$R_L = 300 \Omega, C_L = 35 pF$	2.0		7.0	14			16			16	ns					
		(Figures 4, 5, and 13)	3.0		5.0	10			12			12						
			4.5		4.5	9			11			11						
			5.5		4.5	9			11			11						
t _{OFF}	Turn–Off Time	$R_L = 300 \Omega, C_L = 35 pF$	2.0		11.0	22			24			24	ns					
		(Figures 4, 5, and 13)	3.0		7.0	14			16			16						
			4.5		5.0	10			12			12						
			5.5		5.0	10			12			12						
							Туріса	I @ 25	, VCC	= 5.0 \	/							
C _{IN}	Maximum Input Cap	acitance, Select Input						i	3				pF					
C _{NO or} C _{NO}	C Analog I/O (switch o	off)						1	0									
C _{COM(OFF)}						1	0											
C _{COM(ON)}	Feedthrough (switcl	n on)						2	0									

			V _{CC}	Limit	
Symbol	Parameter	Condition	v	25°C	Unit
BW	Maximum On-Channel -3dB Bandwidth	V _{IS} = 0 dBm	3.0	190	MHz
	or Minimum Frequency Response	V_{IS} centered between V_{CC} and GND	4.5	200	
		(Figures 6 and 14)	5.5	220	
V _{ONL}	Maximum Feedthrough On Loss	V _{IS} = 0 dBm @ 10 kHz	3.0	-2	dB
		V_{IS} centered between V_{CC} and GND	4.5	-2	
		(Figure 6)	5.5	-2	
V _{ISO}	Off-Channel Isolation	f = 100 kHz; V _{IS} = 1 V RMS	3.0	-93	dB
		V_{IS} centered between V_{CC} and GND	4.5		
		(Figures 6 and 15)	5.5		
Q	Charge Injection	$V_{IS} = V_{CC}$ to GND, $F_{IS} = 20$ kHz	3.0	1.5	рС
	Enable Input to Common I/O	$t_r = t_f = 3 \text{ ns}$	5.5	3.0	
		$R_{IS} = 0 \Omega, C_{L} = 1000 \text{ pF}$			
		$Q = C_{L} * \Delta V_{OUT}$			
		(Figures 7 and 16)			
THD	Total Harmonic Distortion	$\rm F_{IS}$ = 20 Hz to 1 MHz, $\rm R_L$ = Rgen = 600 $\Omega, \rm C_L$ = 50 pF	3.3	0.3	%
	THD + Noise	$V_{IS} = 3.0 V_{PP}$ sine wave	5.5	0.15	
		V _{IS} = 5.0 V _{PP} sine wave			
		(Figure 17)			

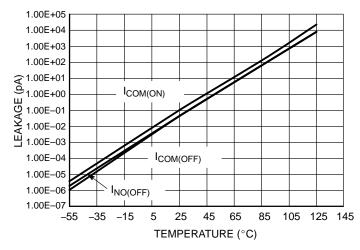
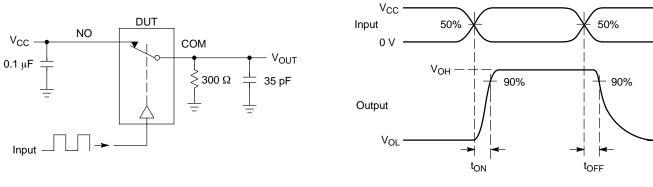
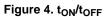
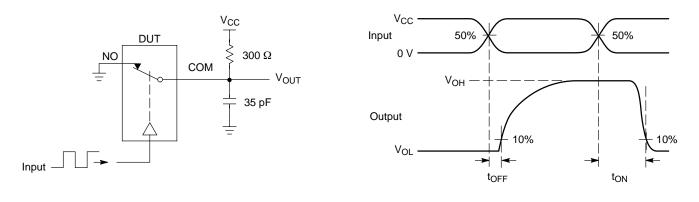
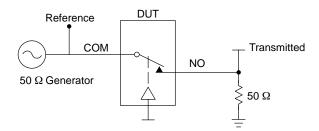
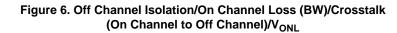
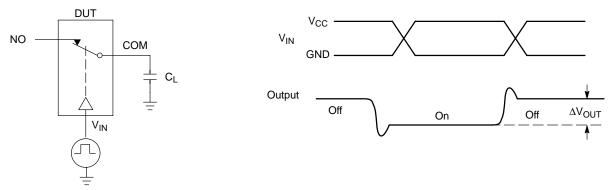




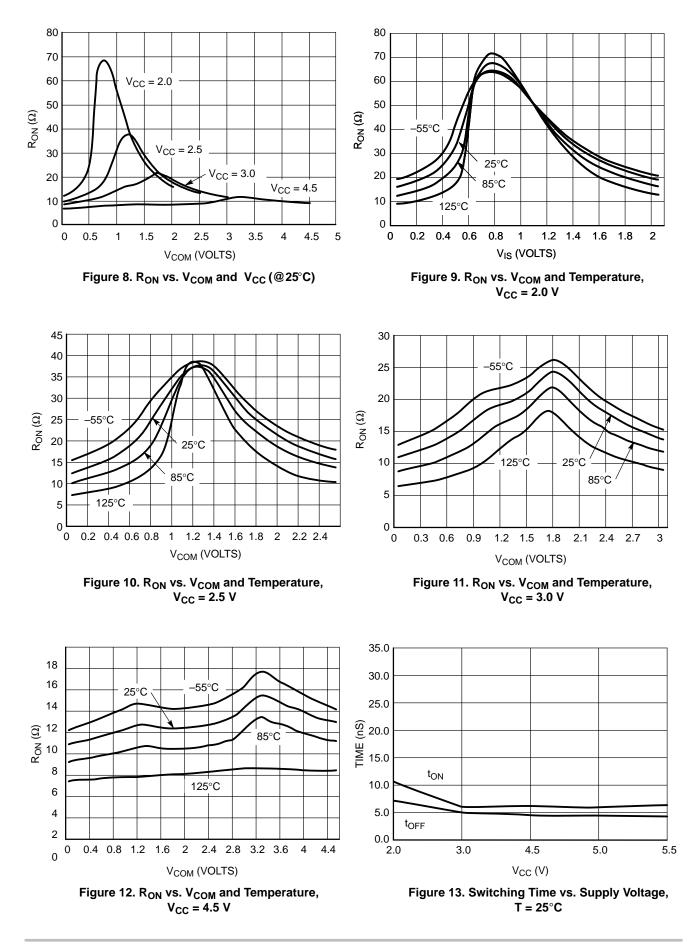
Figure 3. Switch Leakage vs. Temperature


Figure 5. t_{ON}/t_{OFF}



Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. V_{ISO} , Bandwidth and V_{ONL} are independent of the input signal direction.


$$\begin{split} &V_{ISO} = \text{Off Channel Isolation} = 20 \text{ Log } \left(\frac{V\text{OUT}}{V\text{IN}}\right) \text{ for } V_{\text{IN}} \text{ at } 100 \text{ kHz} \\ &V_{\text{ONL}} = \text{On Channel Loss} = 20 \text{ Log } \left(\frac{V\text{OUT}}{V\text{IN}}\right) \text{ for } V_{\text{IN}} \text{ at } 100 \text{ kHz} \text{ to } 50 \text{ MHz} \end{split}$$

Bandwidth (BW) = the frequency 3 dB below $V_{\mbox{ONL}}$

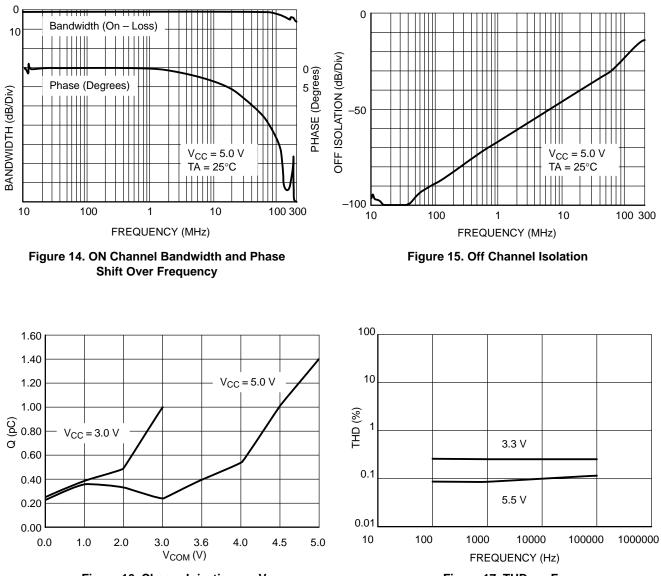


Figure 16. Charge Injection vs. V_{COM}

Figure 17. THD vs. Frequency

DEVICE ORDERING INFORMATION

			Device Nome	enclature					
Device Order Number	Circuit Indicator	Temp Range Identifier	Technology	Device Function	Package Suffix	Tape & Reel Suffix	Package Type (Name/SOT#/ Common Name)	Tape & Reel Size	
NLAST4501DFT2	NLAS	74	VHC1G	66	DF	T2	SC-88A/ SOT-353/ SC-70	178 mm (7 in) 3000 Unit	
NLAST4501DTT1	NLAS	74	VHC1G	66	DT	T1	TSOPS/ SOT-23/ SC-59	178 mm (7 in) 3000 Unit	

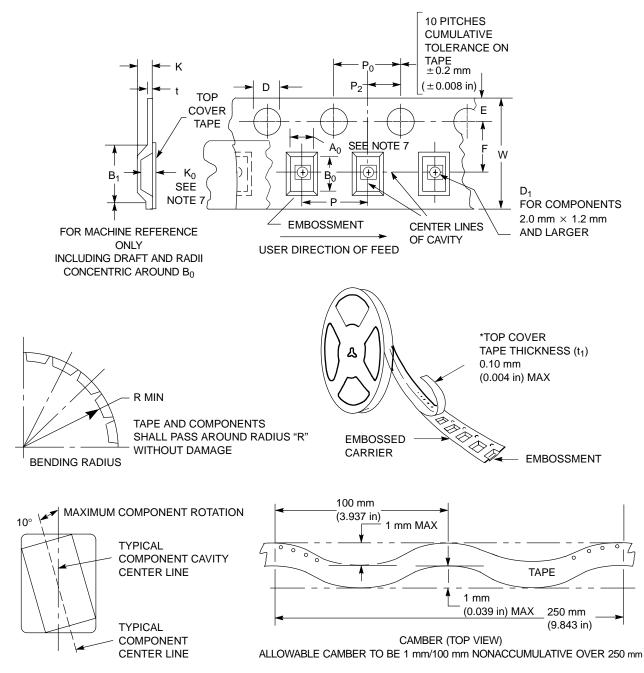
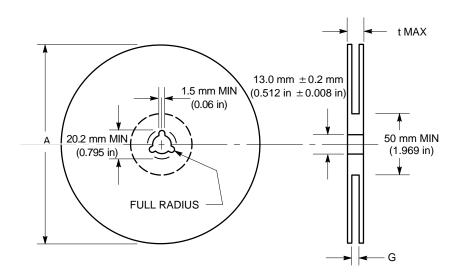
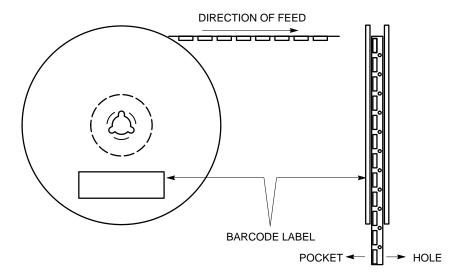



Figure 18. Carrier Tape Specifications

Tape Size	B ₁ Max	D	D ₁	E	F	к	Р	P ₀	P ₂	R	т	w
8 mm	4.35 mm (0.171 in)	1.5 +0.1/ -0.0 mm (0.059 +0.004/ -0.0 in)	1.0 mm Min (0.039 in)	1.75 +0.1 mm (0.069 +0.004 in)	3.5 +0.5 mm (1.38 +0.002 in)	2.4 mm (0.094 in)	4.0 + 0.10 mm (0.157 + 0.004 in)	4.0 +0.1 mm (0.156 +0.004 in)	2.0 +0.1 mm (0.079 +0.002 in)	25 mm (0.98 in)	0.3 +0.05 mm (0.01 +0.0038/ -0.0002 in)	8.0 +0.3 mm (0.315 +0.012 in)

6. Metric Dimensions Govern-English are in parentheses for reference only.


7. A₀, B₀, and K₀ are determined by component size. The clearance between the components and the cavity must be within 0.05 mm min to 0.50 mm max. The component cannot rotate more than 10° within the determined cavity.

REEL DIMENSIONS

Tape Size	T&R Suffix	A Max	G	t Max
8 mm	T1, T2	178 mm (7 in)	8.4 mm, +1.5 mm, –0.0 (0.33 in + 0.059 in, –0.0)	14.4 mm (0.56 in)

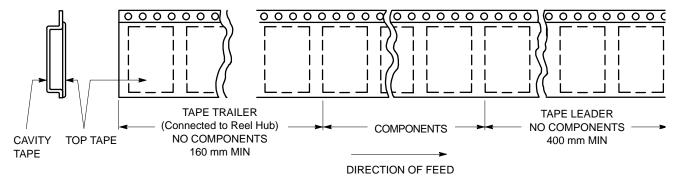
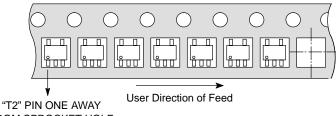
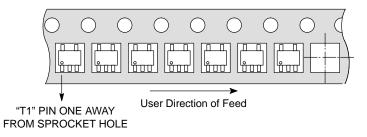
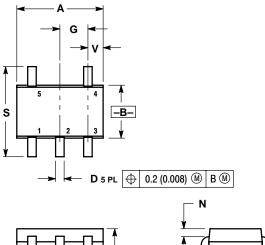
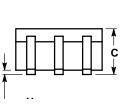
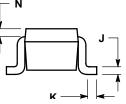




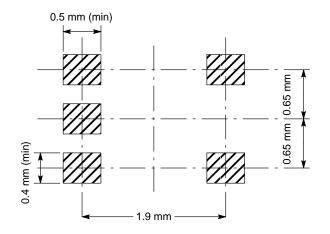
Figure 21. Tape Ends for Finished Goods

FROM SPROCKET HOLE


Figure 22. DFT2 (SC88A) Reel Configuration/Orientation

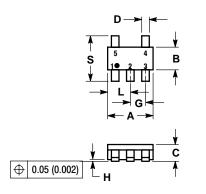

PACKAGE DIMENSIONS

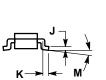

SC-88A/SOT-353/SC-70 DF SUFFIX 5-LEAD PACKAGE CASE 419A-01 ISSUE E



NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

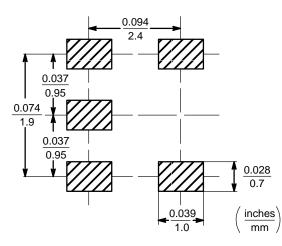
	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.071	0.087	1.80	2.20
В	0.045	0.053	1.15	1.35
С	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	0.30
G	0.026 BSC		0.65 BSC	
Н		0.004		0.10
J	0.004	0.010	0.10	0.25
Κ	0.004	0.012	0.10	0.30
Ν	0.008 REF		0.20 REF	
S	0.079	0.087	2.00	2.20
٧	0.012	0.016	0.30	0.40





PACKAGE DIMENSIONS

TSOP-5/SOT-23/SC-59 **DT SUFFIX** 5-LEAD PACKAGE CASE 483-01 ISSUE A



NOTES:

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	2.90	3.10	0.1142	0.1220
В	1.30	1.70	0.0512	0.0669
С	0.90	1.10	0.0354	0.0433
D	0.25	0.50	0.0098	0.0197
G	0.85	1.00	0.0335	0.0413
Η	0.013	0.100	0.0005	0.0040
J	0.10	0.26	0.0040	0.0102
К	0.20	0.60	0.0079	0.0236
L	1.25	1.55	0.0493	0.0610
Μ	0 °	10 °	0°	10 °
S	2.50	3.00	0.0985	0.1181

<u>Notes</u>

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

- German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET) Email: ONlit–german@hibbertco.com French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)
- Email: ONlit-french@hibbertco.com English Phone: (+1) 303–308–7142 (Mon-Fri 12:00pm to 5:00pm GMT)
- Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit–spanish@hibbertco.com Toll–Free from Mexico: Dial 01–800–288–2872 for Access –

then Dial 866–297–9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 1–303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.