

Aluminum electrolytic capacitors

Capacitors with screw terminals

Series/Type: B43454, B43474 Date: December 2006

 \odot EPCOS AG 2007. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

B43454, B43474 Capacitors with screw terminals Standard – 85 °C General-purpose grade capacitors Applications Uninterruptible power supplies Frequency converters Features

B43454 B43474

All-welded construction ensures reliable electrical contact Self-extinguishing electrolyte

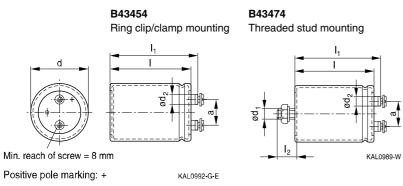
Construction

- Charge-discharge proof, polar
- Aluminum case with insulating sleeve
- Poles with screw terminal connections
- Mounting with ring clips, clamps or threaded stud
- The bases of types with threaded stud and d ≤ 76.9 mm are not insulated

)
B43454, B43474	
Standard – 85 °C	

Specifications and characteristics in brief

350 450 V DC						
1.10 · V _R						
1000 12000 µF	1000 12000 µF					
$\pm 20\% \triangleq M$						
	$\left(\frac{V_R}{V_R}\right)^{0.7}$	+ 4				
l _{leak} ≤ 0.3 μA · \μ	F'V/	+ 4 μΑ				
d = 51.6 mm: appr	ox. 15 n⊦	1				
$d \ge 64.3 \text{ mm}$: appr	ox. 20 n⊢	ł				
	Require	ments:				
> 5000 h	$\Delta C/C$	$\leq \pm 30\%$ of initial value				
> 75000 h	ESR	\leq 3 times initial specified limit				
	I _{leak}	≤ initial specified limit				
	Post tes	t requirements:				
2000 h	$\Delta C/C$	$\leq \pm 10\%$ of initial value				
	ESR	\leq 1.3 times initial specified limit				
	I _{leak}	≤ initial specified limit				
To IEC 60068-2-6,	test Fc:					
Displacement amp	litude 0.7	'5 mm, frequency range 10 55 Hz,				
acceleration max.	10 <i>g</i> , dura	ation 3×2 h.				
	d by its bo	ody which is rigidly clamped to the work				
surface.						
To IEC 60068-1:						
25/085/56 (-25 °C	C/+85 °C/	56 days damp heat test)				
Similar to CECC 3	0301-810)				
IEC 60384-4						
	1.10 · V _R 1000 12000 μF ±20% \triangleq M $I_{leak} ≤ 0.3 μA · (C/μ)$ d = 51.6 mm: appr d ≥ 64.3 mm: appr d ≥ 64.3 mm: appr > 5000 h > 75000 h 2000 h To IEC 60068-2-6, Displacement amp acceleration max. Capacitor mounted surface. To IEC 60068-1: 25/085/56 (-25 °C) Similar to CECC 3	1.10 · V _R 1000 12000 µF ±20% ≙ M I _{leak} ≤ 0.3 µA · $\left(\frac{C_R}{µF}, \frac{V_R}{V}\right)^{0.7}$ d = 51.6 mm: approx. 15 nH d ≥ 64.3 mm: approx. 20 nH > 5000 h > 75000 h ESR I _{leak} 2000 h AC/C ESR I _{leak} To IEC 60068-2-6, test Fc: Displacement amplitude 0.7 acceleration max. 10 g, dura Capacitor mounted by its bo surface. To IEC 60068-1: 25/085/56 (-25 °C/+85 °C/4) Similar to CECC 30301-810				


Ripple current capability

Due to the ripple current capability of the contact elements, the following current upper limits must not be exceeded:

Capacitor diameter	51.6 mm	64.3 mm	76.9 mm
I _{AC,max}	30 A	40 A	50 A

Dimensional drawings

For types with threaded stud and d \leq 76 mm the base is not insulated. Also refer to the mounting instructions in chapter "Capacitors with screw terminals – Accessories".

Dimensions and weights

Ter-	Dimensions (mm) with insulating sleeve							Approx.
minal	d	l ±1	I ₁ ±1	I ₂ +0/-1	d ₁	d_2 max.	a +0.2/-0.4	weight (g)
M5	51.6 +0/-0.8	80.7	87.2	17	M12	10.2	22.2	220
M5	51.6 +0/-0.8	105.7	112.2	17	M12	10.2	22.2	280
M5	64.3 +0/-0.8	80.7	87.2	17	M12	13.2	28.5	370
M5	64.3 +0/-0.8	105.7	112.2	17	M12	13.2	28.5	440
M5	64.3 +0/-0.8	143.2	149.7	17	M12	13.2	28.5	630
M5	76.9 +0/-0.7	105.7	111.5	17	M12	13.2	31.7	620
M5	76.9 +0/-0.7	143.2	149.0	17	M12	13.2	31.7	840
M5	76.9+0/-0.7	168.7	174.5	17	M12	13.2	31.7	1000
M5	76.9 +0/-0.7	220.7	226.5	17	M12	13.2	31.7	1300

Packing

Capacitor diameter d	Packing units (pcs.)
51.6 mm	22
64.3 mm	15
76.9 mm	12

For ecological reasons the packing is pure cardboard.

43474		
85 °C		
	ιJ	L,

B43454, B Standard –

Accessories

The following items are included in the delivery package, but are not fastened to the capacitors:

For terminals	M5	A 5.1 DIN 6797	Cylinder-head screw M5 \times 8 DIN 84-4.8	2.0 Nm
For mounting	M12	J 12.5 DIN 6797	Hex nut BM 12 DIN 439	10 Nm

The following items must be ordered separately. For details, refer to chapter "Screw terminals – Accessories".

Item	Туре
Ring clips	B44030
Clamps for capacitors with $d \ge 64.3 \text{ mm}$	B44030
Insulating parts	B44020

Overview of available types

B43454, B43474 Standard - 85 °C

V _R (V DC)	350	400	450			
	Case dimensions $d \times I$ (mm)					
C _R (μF)						
1000		51.6× 80.7	51.6×105.7			
1500	51.6× 80.7	51.6 × 105.7	64.3× 80.7			
2200	51.6 × 105.7 64.3 × 80.7	64.3× 80.7	64.3 × 105.7			
2700	64.3× 80.7	64.3 × 105.7	76.9×105.7			
3300	64.3×105.7	64.3×105.7	64.3×143.2			
3900	64.3 × 105.7	76.9 × 105.7	76.9×143.2			
4700	64.3 × 143.2 76.9 × 105.7	76.9 × 143.2	76.9 × 168.7			
5600	64.3×143.2	76.9 × 143.2	76.9×220.7			
6800	76.9×143.2	76.9 × 168.7	76.9×220.7			
8200	76.9 × 168.7	76.9 × 220.7	76.9×220.7			
10000	76.9×220.7	76.9 × 220.7				
12000	76.9×220.7					

The capacitance and voltage ratings listed above are available in different cases upon request. Other voltage and capacitance ratings are also available upon request.

B43454, B43474	
Standard – 85 $^\circ\text{C}$	

Technical data and ordering codes

	-			_		-		
C _R	Case	ESR _{typ}	ESR_{max}	Z _{max}	I _{AC,max}	I _{AC,R}	Ordering code	
100 Hz	dimensions	100 Hz	100 Hz	10 kHz	100 Hz	100 Hz	(composition see below)	
20 °C	d×l	20 °C	20 °C	20 °C	40 °C	85 °C		
μF	mm	mΩ	mΩ	mΩ	A	A		
$V_{R} = 350$	V _R = 350 V DC							
1500	51.6×80.7	82	123	98	11	4.3	B434*4A4158M000	
2200	51.6 imes 105.7	58	87	70	15	5.6	B434*4A4228M000	
2200	64.3×80.7	58	87	70	15	5.6	B434*4B4228M000	
2700	64.3×80.7	48	72	58	17	6.3	B434*4A4278M000	
3300	64.3 imes 105.7	40	60	48	19	7.3	B434*4A4338M000	
3900	64.3×105.7	35	53	42	21	8.0	B434*4A4398M000	
4700	64.3×143.2	30	45	36	24	9.2	B434*4A4478M000	
4700	76.9×105.7	30	45	36	24	8.9	B434*4B4478M000	
5600	64.3×143.2	25	38	30	28	10.5	B434*4A4568M000	
6800	76.9 imes 143.2	20	30	24	32	12.1	B434*4A4688M000	
8200	76.9 imes 168.7	16	24	19	38	14.2	B434*4A4828M000	
10000	76.9 imes 220.7	12	18	14	47	17.6	B434*4A4109M000	
12000	76.9×220.7	10	15	12	54	20.2	B434*4A4129M000	
$V_{R} = 400$	V DC							
1000	51.6 × 80.7	99	149	119	10	3.8	B434*4A9108M000	
1500	51.6×105.7	76	114	91	12	4.7	B434*4A9158M000	
2200	64.3 imes 80.7	62	93	74	15	5.5	B434*4A9228M000	
2700	64.3 imes 105.7	52	78	62	17	6.3	B434*4A9278M000	
3300	64.3 imes 105.7	43	65	52	19	7.2	B434*4A9338M000	
3900	76.9×105.7	35	53	42	22	8.4	B434*4A9398M000	
4700	76.9×143.2	28	42	34	26	9.8	B434*4A9478M000	
5600	76.9×143.2	23	35	28	30	11.3	B434*4A9568M000	
6800	76.9×168.7	21	32	25	33	12.3	B434*4A9688M000	
8200	76.9 imes 220.7	18	27	22	38	14.2	B434*4A9828M000	
10000	76.9×220.7	16	24	19	42	15.8	B434*4A9109M000	

Composition of ordering code

* = Mounting style

5 = for capacitors with ring clip/clamp mounting

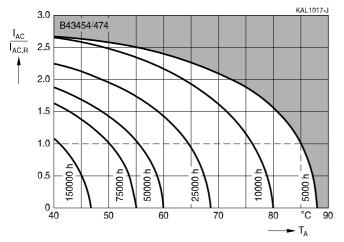
7 = for capacitors with threaded stud

B43454, B43474 Standard - 85 $^{\circ}\text{C}$

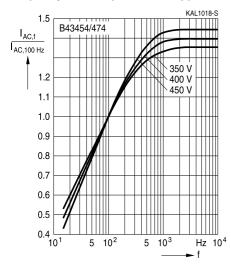
Technical data and ordering codes

C _R	Case	ESR _{typ}	ESR _{max}	Z _{max}	I _{AC.max}	I _{AC.B}	Ordering code
100 Hz	dimensions	100 Hz	100 Hz	10 kHz	100 Hz	100 Hz	(composition see below)
20 °C	$d \times I$	20 °C	20 °C	20 °C	40 °C	85 °C	
μF	mm	mΩ	mΩ	mΩ	А	А	
V _B = 450 V DC							
1000	51.6×105.7	120	180	144	10	3.6	B434*4A5108M000
1500	64.3×80.7	74	111	89	13	4.9	B434*4A5158M000
2200	64.3×105.7	54	81	65	16	6.2	B434*4A5228M000
2700	76.9×105.7	46	69	55	19	7.2	B434*4A5278M000
3300	64.3×143.2	39	59	47	21	8.1	B434*4A5338M000
3900	76.9×143.2	34	51	41	24	8.9	B434*4A5398M000
4700	76.9×168.7	29	44	35	27	10.1	B434*4A5478M000
5600	76.9×220.7	25	38	30	30	11.5	B434*4A5568M000
6800	76.9×220.7	21	32	25	35	13.2	B434*4A5688M000
8200	76.9×220.7	19	29	23	39	14.5	B434*4A5828M000

Composition of ordering code


* = Mounting style

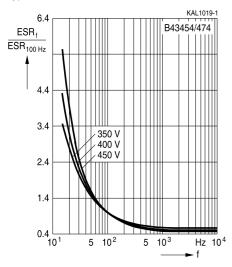
5 = for capacitors with ring clip/clamp mounting 7 = for capacitors with threaded stud



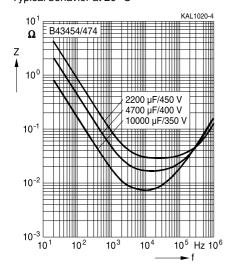
Useful life

depending on ambient temperature T_A under ripple current operating conditions¹⁾

Frequency factor of permissible ripple current \mathbf{I}_{AC} versus frequency f


1) Refer to chapter "General technical information, 5.3 Calculation of useful life" on how to interpret the useful life graphs.

Page 9 of 14



Frequency characteristics of ESR

Typical behavior

Impedance Z versus frequency f Typical behavior at 20 °C

Â

Cautions and warnings

Personal safety

The electrolytes used by EPCOS have not only been optimized with a view to the intended application, but also with regard to health and environmental compatibility. They do not contain any solvents that are detrimental to health, e.g. dimethyl formamide (DMF) or dimethyl acetamide (DMAC).

Furthermore, part of the high-voltage electrolytes used by EPCOS are self-extinguishing. They contain flame-retarding substances which will quickly extinguish any flame that may have been ignited.

As far as possible, EPCOS does not use any dangerous chemicals or compounds to produce operating electrolytes. However, in exceptional cases, such materials must be used in order to achieve specific physical and electrical properties because no safe substitute materials are currently known. However, the amount of dangerous materials used in our products has been limited to an absolute minimum. Nevertheless, the following rules should be observed when handling Al electrolytic capacitors:

- Any escaping electrolyte should not come into contact with eyes or skin.
- If electrolyte does come into contact with the skin, wash the affected parts immediately with running water. If the eyes are affected, rinse them for 10 minutes with plenty of water. If symptoms persist, seek medical treatment.
- Avoid breathing in electrolyte vapor or mists. Workplaces and other affected areas should be well ventilated. Clothing that has been contaminated by electrolyte must be changed and rinsed in water.

B43454, B43474 Standard – 85 °C

Product safety

The table below summarize the safety instructions that must be observed without fail. A detailed description can be found in the relevant sections of chapter "General technical information".

Торіс	Safety information	Reference Chapter "General technical information"
Polarity	Make sure that polar capacitors are connected with the right polarity.	1 "Basic construction of aluminum electrolytic capacitors"
Reverse voltage	Voltages polarity classes should be prevented by connecting a diode.	3.1.6 "Reverse voltage"
Upper category temperature	Do not exceed the upper category temperatur.	7.2 "Maximum permissible operating temperature"
Maintenance	Make periodic inspections of the capacitors. Before the inspection, make sure that the power supply is turned off and carefully discharge the electricity of the capacitors. Do not apply any mechanical stress to the capacitor terminals.	10 "Maintenance"
Mounting position of screw terminal capacitors	Do not mount the capacitor with the terminals (safety vent) upside down.	11.1. "Mounting positions of capacitors with screw terminals"
Mounting of single-ended capacitors	The internal structure of single-ended capacitors might be damaged if excessive force is applied to the lead wires. Avoid any compressive, tensile or flexural stress. Do not move the capacitor after soldering to PC board. Do not pick up the PC board by the soldered capacitor. Do not insert the capacitor on the PC board with a hole space different to the lead space specified.	11.4 "Mounting considerations for single-ended capacitors"
Robustness of terminals	The following maximum tightening torques must not be exceeded when connecting screw terminals: M5: 2 Nm M6: 2.5 Nm	11.3 "Mounting torques"
Soldering	Do not exceed the specified time or temperature limits during soldering.	11.5 "Soldering"

Page 12 of 14

B43454, B43474	9	ë
Standard – 85 $^\circ\text{C}$		

Торіс	Safety information	Reference Chapter "General technical information"
Soldering, cleaning agents	Do not allow halogenated hydrocarbons to come into contact with aluminum electrolytic capacitors.	11.6 "Cleaning agents"
Passive flammability	Avoid external energy, such as fire or electricity.	8.1 "Passive flammability"
Active flammability	Avoid overload of the capacitors.	8.2 "Active flammability"
		Reference Chapter "Capacitors with screw terminals"
Breakdown strength of insulating sleeves	Do not damage the insulating sleeve, especially when ring clips are used for mounting.	"Screw terminals - accessories"

Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of passive electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of a passive electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of a passive electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as "hazardous"). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available.
- Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
- The trade names EPCOS, EPCOS-JONES, BAOKE, Alu-X, CeraDiode, CSSP, MLSC, PhaseCap, PhaseMod, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMID, SIOV, SIP5D, SIP5K, UltraCap, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.