NX3DV42

Dual high-speed USB 2.0 double-pole double-throw analog switch

Rev. 1 — 3 January 2012

Product data sheet

1. General description

The NX3DV42 is a double-pole double-throw analog switch suitable for use as an analog or digital multiplexer/demultiplexer. Its wide bandwidth and low bit-to-bit skew allows the NX3DV42 to pass high-speed differential signals with good signal integrity. Its high channel to channel crosstalk rejection results in minimal noise interference. The bandwidth is wide enough to pass high-speed USB 2.0 differential signals (480 Mb/s). It consist of two switches, each with two independent input/outputs (HSDn+ and HSDn-) and a common input/output (D+ or D-). One digital inputs (S) is used to select the switch position. When pin $\overline{\text{OE}}$ is HIGH, the switches are turned off. Schmitt trigger action at the select input (S) and enable input ($\overline{\text{OE}}$) makes the circuit tolerant to slower input rise and fall times across the entire V_{CC} range from 3.0 V to 4.3 V.

2. Features and benefits

- Supply voltage range from 3.0 V to 4.3 V
- 4 Ω typical ON resistance
- 7.3 pF typical ON capacitance
- 950 MHz typical bandwidth or data frequency
- Low crosstalk of -30 dB at 240 MHz
- Break-before-make switching
- ESD protection:
 - ◆ HBM JESD22-A114F Class 3A exceeds 4000 V
 - CDM AEC-Q100-011 revision B exceeds 1000 V
 - ◆ HBM exceeds 12000 V for power to GND protection
- Latch-up performance exceeds 100 mA per JESD 78 Class II Level A
- Specified from -40 °C to +85 °C

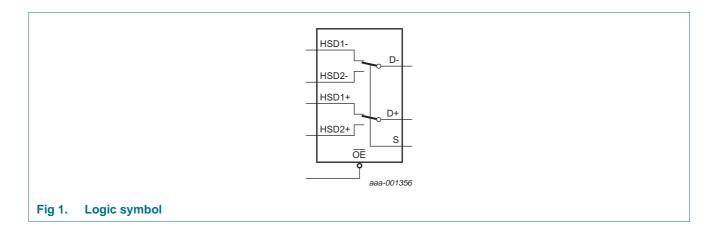
3. Applications

- Cell phone, PDA, Digital camera and notebook
- LCD monitor, TV and set-top box

Dual high-speed USB 2.0 double-pole double-throw analog switch

4. Ordering information

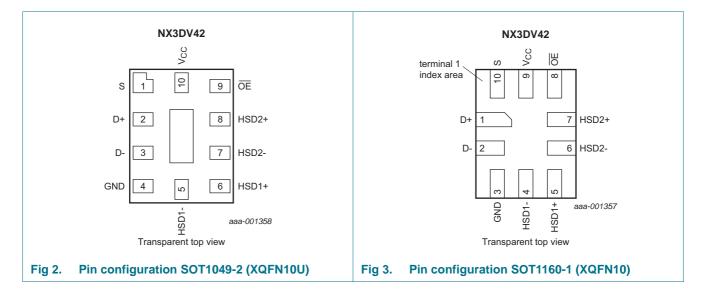
Table 1. Ordering information


Type number	Package						
	Temperature range	Name	Description	Version			
NX3DV42GM	-40 °C to +85 °C	XQFN10U	plastic extremely thin quad flat package; no leads; 10 terminals; UTLP based; body $2 \times 1.55 \times 0.5$ mm	SOT1049-2			
NX3DV42GU	–40 °C to +85 °C	XQFN10	plastic, extremely thin quad flat package; no leads; 10 terminals; body 1.40 x 1.80 x 0.50 mm	SOT1160-1			

5. Marking

Table 2. Marking

Type number	Marking code
NX3DV42GM	x4
NX3DV42GU	x4


6. Functional diagram

Dual high-speed USB 2.0 double-pole double-throw analog switch

7. Pinning information

7.1 Pinning

7.2 Pin description

Table 3. Pin description

Symbol	Pin		Description
	SOT1049-2	SOT1160-1	
HSD1-, HSD2-	5, 7	4, 6	independent input or output
HSD1+, HSD2+	6, 8	5, 7	independent input or output
D+, D-	2, 3	1, 2	common output or input
GND	4	3	ground (0 V)
OE	9	8	output enable input (active-LOW)
S	1	10	select input
V _{CC}	10	9	supply voltage

8. Functional description

Table 4. Function table[1]

Input		Channel on
S	OE	
L	L	HSD1+ and HSD1-
Н	L	HSD2+ and HSD2-
X	Н	switch off

^[1] H = HIGH voltage level; L = LOW voltage level; X = don't care.

Dual high-speed USB 2.0 double-pole double-throw analog switch

9. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+5.5	V
VI	input voltage	pins S and OE	<u>[1]</u> –0.5	V_{CC}	V
V_{SW}	switch voltage		-0.5	+5.5	V
I _{IK}	input clamping current	$V_1 < -0.5 \text{ V}$	-50	-	mA
I _{SK}	switch clamping current	$V_1 < -0.5 \text{ V}$	-	±50	mΑ
I _{SW}	switch current		-	±100	mA
I _{CC}	supply current		-	+50	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$	-	250	mW

^[1] The minimum input voltage rating may be exceeded if the input current rating is observed.

10. Recommended operating conditions

Table 6. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		3.0	4.3	V
VI	input voltage	pins S and OE	0	V_{CC}	V
V_{SW}	switch voltage		<u>[1]</u> 0	4.5	V
T _{amb}	ambient temperature		-40	+85	°C

^[1] To avoid sinking GND current from terminals D+ and D- when switch current flows in terminals HSDn+ and HSDn-, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminals D+ and D-, no GND current will flow from terminals HSDn+ and HSDn-. In this case, there is no limit for the voltage drop across the switch.

11. Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground 0 V).

Symbol	Parameter	Conditions	T _{amb} =	T _{amb} = -40 °C to +85 °C			
			Min	Typ[1]	Max		
V_{IH}	HIGH-level input	V _{CC} = 3.0 V to 3.6 V	1.3	-	-	V	
voltage	V _{CC} = 4.3 V	1.7	-	-	V		
V _{IL} LOW-level input voltage	$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	-	-	0.5	V		
	voltage	V _{CC} = 4.3 V	-	-	0.7	V	
V _{IK}	input clamping voltage	$V_{CC} = 3.0 \text{ V}; I_I = -18 \text{ mA}$	-	-	-1.2	V	
l _l	input leakage current	pins S and \overline{OE} ; V _I = GND to 4.3 V; V _{CC} = 4.3 V	-	-	±1	μА	
I _{S(OFF)}	OFF-state leakage current	V _{CC} = 4.3 V; see <u>Figure 4</u>	-	-	±2	μА	

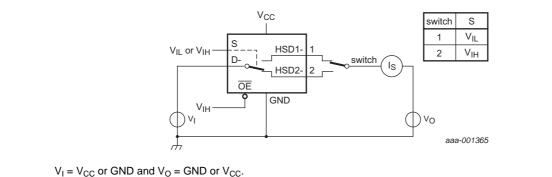
NX3DV42

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2012. All rights reserved.

NX3DV42 **NXP Semiconductors**

Dual high-speed USB 2.0 double-pole double-throw analog switch


Static characteristics ... continued Table 7.

At recommended operating conditions; voltages are referenced to GND (ground 0 V).

Symbol	Parameter	Conditions	T _{amb} =	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$			
			Min	Typ[1]	Max		
I _{OFF}	power-off leakage current	V_1 or $V_0 = 0 \text{ V}$ to 4.3 V; $V_{CC} = 0 \text{ V}$	-	-	±2	μΑ	
I _{CC}	supply current	$V_1 = V_{CC}$ or GND; $V_{SW} = GND$ or V_{CC} ; $V_{CC} = 4.3 \text{ V}$	-	-	1	μΑ	
ΔI_{CC}	additional supply current	V_I = 2.6 V; V_{SW} = GND or V_{CC} ; V_{CC} = 4.3 V	-	-	10	μΑ	
		V_I = 1.8 V; V_{SW} = GND or V_{CC} ; V_{CC} = 4.3 V	-	-	15	μΑ	
Cı	input capacitance	pins S and OE	-	1.0	-	pF	
C _{S(OFF)}	OFF-state capacitance	pins HSDn+ and HSDn–; V_{CC} = 3.3 V; V_{I} = 0 V to 3.3 V	-	2.8	-	pF	
C _{S(ON)}	ON-state capacitance	pins D+ and D-; V_{CC} = 3.3 V; V_{I} = 0 V to 3.3 V	-	7.3	-	pF	

^[1] Typical values are measured at T_{amb} = 25 °C and V_{CC} = 3.3 V.

11.1 Test circuits

Test circuit also applies for D+, HSD1+ and HSD2+.

Test circuit for measuring OFF-state leakage current Fig 4.

11.2 ON resistance

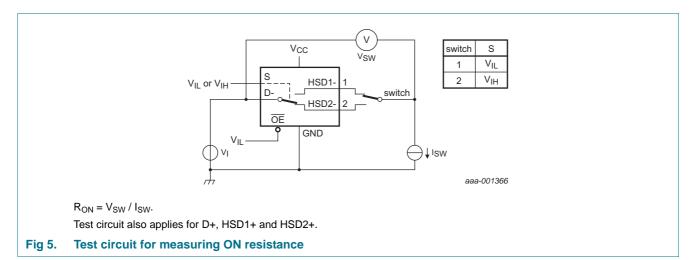
Table 8. **ON resistance**

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		-40	Unit		
				Min	Typ[1]	Max	
R_{ON}	ON resistance	$V_I = 0.4 \text{ V}$; $I_{SW} = 8 \text{ mA}$; see Figure 5					
		V _{CC} = 3.0 V		-	3.9	6.5	Ω
ΔR _{ON} ON resistance mismatch between channels		$V_{I} = 0.4 \text{ V}; I_{SW} = 8 \text{ mA}$	[2]				
		$V_{CC} = 3.0 \text{ V}$		-	0.65	-	Ω

^[1] Typical values are measured at T_{amb} = 25 °C.

NX3DV42


All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2012. All rights reserved.

Measured at identical V_{CC}, temperature and input voltage.

Dual high-speed USB 2.0 double-pole double-throw analog switch

11.3 ON resistance test circuit and graphs

12. Dynamic characteristics

Table 9. Dynamic characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for load circuit see Figure 9.

Parameter	Conditions		$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$			Unit
			Min	Typ[1]	Max	
propagation delay	HSDn+ to D+ or HSDn- to D- or D+ to HSDn+ or D- to HSDn-; see Figure 6	[2][3]				
	V _{CC} = 3.3 V		-	0.25	-	ns
enable time	S or OE to D+ or D-; see Figure 7	[4]				
	$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		-	11.2	30	ns
disable time	S or OE to D+ or D-; see Figure 7	<u>[5]</u>				
	V _{CC} = 3.0 V to 3.6 V		-	3.9	25	ns
break-before-make time	see <u>Figure 8</u>	[3]				
	V _{CC} = 3.0 V to 3.6 V		2.0	5.9	-	ns
pulse skew time	see Figure 6					
	$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	[3]	-	20	-	ps
jitter time	R_L = 50 Ω; C_L = 5 pF; t_r , t_f = 500 ps (10% to 90 %) at 480 Mbs (PRBS = 2^{15} – 1)	[3]	-	200	-	ps
	enable time disable time break-before-make time pulse skew time	propagation delay $ \begin{array}{c} \text{HSDn+ to D+ or HSDn- to D- or} \\ \text{D+ to HSDn+ or D- to HSDn-;} \\ \text{see } \overline{\text{Figure 6}} \\ \hline V_{CC} = 3.3 \text{ V} \\ \\ \text{enable time} \\ \hline S \text{ or } \overline{\text{OE}} \text{ to D+ or D-; see } \underline{\text{Figure 7}} \\ \hline V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \\ \\ \text{disable time} \\ \hline S \text{ or } \overline{\text{OE}} \text{ to D+ or D-; see } \underline{\text{Figure 7}} \\ \hline V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \\ \\ \text{break-before-make time} \\ \hline S \text{ eee } \underline{\text{Figure 8}} \\ \hline V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \\ \\ \text{pulse skew time} \\ \hline S \text{ eee } \underline{\text{Figure 6}} \\ \hline V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \\ \\ \text{jitter time} \\ \hline R_L = 50 \ \Omega; \ C_L = 5 \ \text{pF}; \ t_r, \ t_f = 500 \ \text{ps}} \\ \hline (10\% \text{ to } 90 \ \%) \text{ at } 480 \text{ Mbs (PRBS)} \\ \hline \end{array} $	propagation delay $ \begin{array}{c} \text{HSDn+ to D+ or HSDn- to D- or} \\ \text{D+ to HSDn+ or D- to HSDn-;} \\ \text{see } \underline{\text{Figure 6}} \\ \hline V_{CC} = 3.3 \text{ V} \\ \\ \text{enable time} \\ \hline S \text{ or } \overline{\text{OE}} \text{ to D+ or D-; see } \underline{\text{Figure 7}} \\ \hline V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \\ \\ \text{disable time} \\ \hline S \text{ or } \overline{\text{OE}} \text{ to D+ or D-; see } \underline{\text{Figure 7}} \\ \hline V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \\ \\ \text{break-before-make time} \\ \hline S \text{ eee } \underline{\text{Figure 8}} \\ \hline V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \\ \\ \text{pulse skew time} \\ \hline S \text{ eee } \underline{\text{Figure 6}} \\ \hline V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \\ \\ \text{gitter time} \\ \hline R_L = 50 \ \Omega; \ C_L = 5 \ \text{pF; t_r, t_f = 500 ps} \\ (10\% \text{ to } 90 \ \%) \text{ at } 480 \ \text{Mbs} \text{ (PRBS)} \\ \hline \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

^[1] Typical values are measured at T_{amb} = 25 °C, C_L = 5 pF and V_{CC} = 3.3 V.

^[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

^[3] Guaranteed by design.

^[4] t_{en} is the same as t_{PZH}

^[5] t_{dis} is the same as t_{PHZ}

Dual high-speed USB 2.0 double-pole double-throw analog switch

12.1 Waveform and test circuits

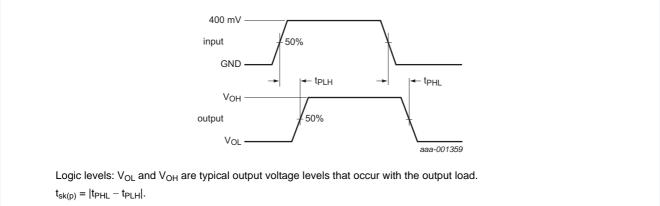


Fig 6. The data input to output propagation delay times and pulse skew times

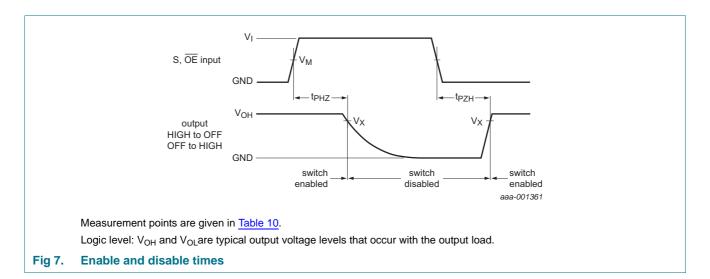
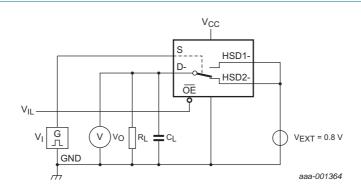
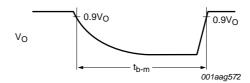
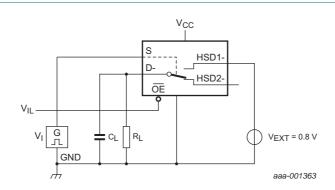



Table 10. Measurement points


Supply voltage	Input		Output
V _{CC}	V _M	VI	V _X
3.0 V to 3.6 V	0.5V _{CC}	V _{CC}	0.9V _{OH}

Dual high-speed USB 2.0 double-pole double-throw analog switch

a. Test circuit.



b. Input and output measurement points

Test circuit also applies for D+, HSD1+ and HSD2+.

Fig 8. Test circuit for measuring break-before-make timing

Test circuit also applies for D+, HSD1+ and HSD2+.

Test data is given in Table 11.

Definitions test circuit:

 R_T = Termination resistance (should be equal to output impedance Z_0 of the pulse generator).

 R_L = Load resistance.

 C_L = Load capacitance including jig and probe capacitance.

 V_{EXT} = External voltage for measuring switching times.

 V_I may be connected to S or \overline{OE} .

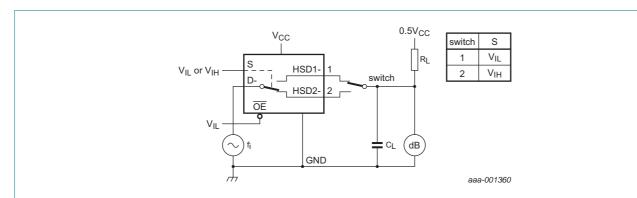
Fig 9. Test circuit for measuring switching times

Dual high-speed USB 2.0 double-pole double-throw analog switch

Table 11. Test data

Supply voltage	Input		t Load	
V _{CC}	V _I	t _r , t _f	CL	R_L
3.0 V to 3.6 V	V _{CC}	≤ 2.5 ns	5 pF	50 Ω

12.2 Additional dynamic characteristics

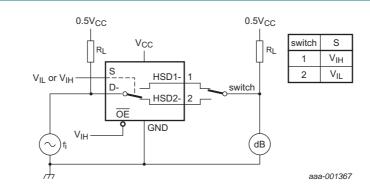

Table 12. Additional dynamic characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); $V_I = GND$ or V_{CC} (unless otherwise specified); $t_r = t_f \le 2.5$ ns.

Symbol	Parameter	Conditions		T _{amb} = 25 °C			Unit
				Min	Typ[2]	Max	
f _(-3dB)	-3 dB frequency response	$R_L = 50 \Omega$; see Figure 10	<u>[1]</u>				
		$C_L = 0 \text{ pF}; V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		-	950	-	MHz
		$C_L = 5 \text{ pF}; V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		-	450	-	MHz
α_{iso}	isolation (OFF-state)	f_i = 240 MHz; R_L = 50 Ω ; see Figure 11	<u>[1]</u>				
		V _{CC} = 3.0 V to 3.6 V		-	-30	-	dB
Xtalk	crosstalk	between switches; $f_i = 240 \text{ MHz}$; $R_L = 50 \Omega$; see Figure 12	<u>[1]</u>				
		V _{CC} = 3.0 V to 3.6 V		-	-30	-	dB

^[1] f_i is biased at $0.5V_{CC}$.

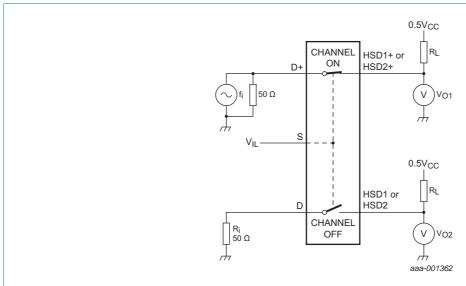
12.3 Test circuits



Adjust f_i voltage to obtain 0 dBm level at output. Increase f_i frequency until dB meter reads -3 dB. Test circuit also applies for D+, HSD1+ and HSD2+.

Fig 10. Test circuit for measuring the frequency response when channel is in ON-state

^[2] Typical values are measured at T_{amb} = 25 °C and V_{CC} = 3.3 V.


Dual high-speed USB 2.0 double-pole double-throw analog switch

Adjust f_i voltage to obtain 0 dBm level at input.

Test circuit also applies for D+, HSD1+ and HSD2+.

Fig 11. Test circuit for measuring isolation (OFF-state)

 $20 \log_{10} (V_{O2}/V_{O1})$ or $20 \log_{10} (V_{O1}/V_{O2})$.

Fig 12. Test circuit for measuring crosstalk between switches

Dual high-speed USB 2.0 double-pole double-throw analog switch

13. Package outline

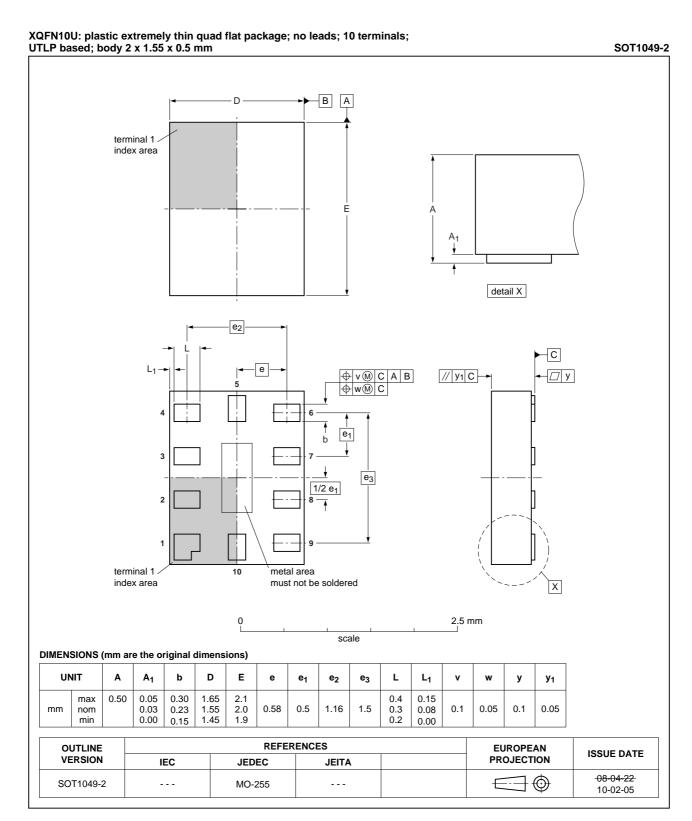


Fig 13. Package outline SOT1049-2 (XQFN10U)

3DV42 All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2012. All rights reserved.

Dual high-speed USB 2.0 double-pole double-throw analog switch

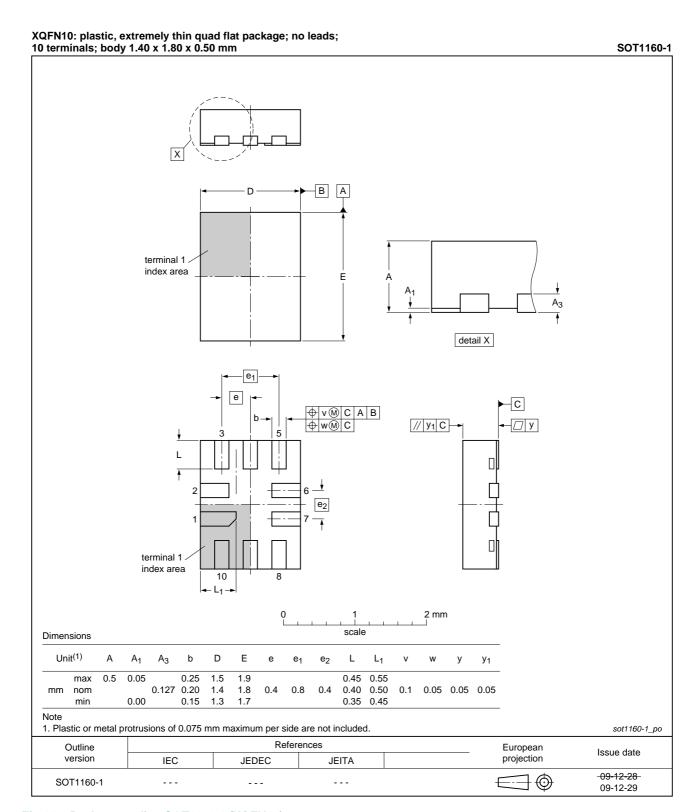


Fig 14. Package outline SOT1160-1 (XQFN10)

NX3DV42

Dual high-speed USB 2.0 double-pole double-throw analog switch

14. Abbreviations

Table 13. Abbreviations

Acronym	Description
CDM	Charged Device Model
CMOS	Complementary Metal-Oxide Semiconductor
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

15. Revision history

Table 14. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
NX3DV42 v.1	20120103	Product data sheet	-	-

Dual high-speed USB 2.0 double-pole double-throw analog switch

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

NX3DV42

Dual high-speed USB 2.0 double-pole double-throw analog switch

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the

product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Dual high-speed USB 2.0 double-pole double-throw analog switch

18. Contents

1	General description
2	Features and benefits
3	Applications
4	Ordering information
5	Marking 2
6	Functional diagram 2
7	Pinning information 3
7.1	Pinning
7.2	Pin description
8	Functional description 3
9	Limiting values 4
10	Recommended operating conditions 4
11	Static characteristics 4
11.1	Test circuits 5
11.2	ON resistance 5
11.3	ON resistance test circuit and graphs 6
12	Dynamic characteristics 6
12.1	Waveform and test circuits 7
12.2	Additional dynamic characteristics 9
12.3	Test circuits9
13	Package outline
14	Abbreviations
15	Revision history 13
16	Legal information 14
16.1	Data sheet status
16.2	Definitions14
16.3	Disclaimers
16.4	Trademarks15
17	Contact information
18	Contents 16

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2012.

All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 3 January 2012 Document identifier: NX3DV42