

ABA3101
1 GHz Balanced Low Noise
Linear Amplifier
Data Sheet - Rev 2.1

FEATURES

- 12 dB Gain
- +8 V Nominal Supply Operation
- High Linearity
- Low Noise Figure: 2.7 dB (typ.)
- Characterized at +34 dBmV output power
- Wide Band Operation to Beyond 1 GHz
- -40 to +85°C
- RoHS-Compliant Package
- Heat Slug Package for enhanced Thermal Management

APPLICATIONS

- Driver Amplifier
- CATV Distribution / Drop Amplifiers
- Set Top Boxes
- Home Gateway

PRODUCT DESCRIPTION

The ABA3101 is a monolithic IC intended for use in applications requiring high linearity, such as Cellular Telephone Base Station Driver Amplifiers, CATV Fiber Receiver and Distribution Amplifiers, CATV Drop Am-

plifiers, CATV Set Top Boxes, and Home Gateways. Offered in a modified 16 lead surface mount SOIC package with a heat slug, it is well suited for use in amplifiers where small size, reduced component count, and high reliability are important.

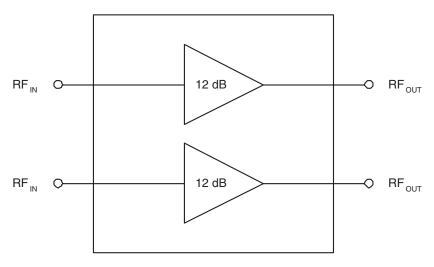


Figure 1: Block Diagram

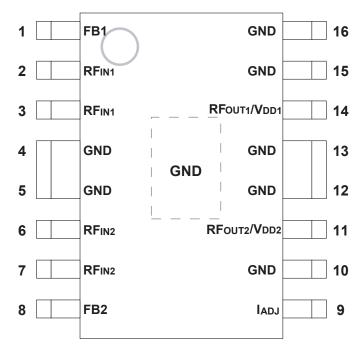


Figure 2: Pin Out

Table 1: Pin Description

PIN	NAME	DESCRIPTION	PIN	NAME	DESCRIPTION
1	FB1	Feedback for Amplifier A1	9	l adj	Current Adjust
2	RF _{IN1}	RF Input of Amplifier A1	10	GND	Ground
3	RF _{IN1}	RF Input of Amplifier A1	11	RFout2/Vdd2	RF Output and VDD of Amplifier A2
4	GND	Ground	12	GND	Ground
5	GND	Ground	13	GND	Ground
6	RF _{IN2}	RF Input of Amplifier A2	14	RFout1/VDD1	RF Output and VDD of Amplifier A1
7	RF _{IN2}	RF Input of Amplifier A2	15	GND	Ground
8	FB2	Feedback for Amplifier A2	16	GND	Ground

Table 2: Absolute Minimum and Maximum Ratings

PARAMETER	MIN	MAX	UNIT
Analog Supply (pins 11, 14)	0	+12	VDC
RF Power at Inputs (pins 2, 3, 6, 7)	-	+15	dBm
Storage Temperature	-65	+150	°C
Soldering Temperature	-	260	°C
Soldering Time	-	5	sec

Stresses in excess of the absolute ratings may cause permanent damage. Functional operation is not implied under these conditions. Exposure to absolute ratings for extended periods of time may adversely affect reliability.

Notes:

- 1. Pins 1, 2, 3, 6, 7 and 8 should be AC-coupled. No external DC bias should be applied
- 2. Pin 9 should be AC-grounded. No external DC bias should be applied.

Table 3: Operating Ranges

PARAMETER	MIN	TYP	MAX	UNIT
RF Input / Output Frequency	50	-	1000	MHz
Analog Supply: VDD (pins 11, 14)	+4.5	+8	+9	VDC
Case Temperature: Tc	-40	-	+100	°C

The device may be operated safely over these conditions; however, parametric performance is guaranteed only over the conditions defined in the electrical specifications.

Table 4: Electrical Specifications (TA = +25 °C, V_{DD} = + 8 VDC, Test System = 75 Ω)

			<u> </u>	-	,
PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
Gain at 1 GHz	12	12.5	13.2	dB	at 1 GHz
Noise Figure	- - -	2.5 2.7 3.2	3.5 3.5 3.5	dB	50 - 550 MHz 550 - 800 MHz 800 - 1002 MHz
Input / Output Return Loss	20	22	-	dB	
CSO (1)	-	-70	-69	dBc	
CTB (1)	-	-72	-70	dBc	
2nd Order Output Intercept Point (OIP2) (2)	-	+70	1	dBm	
3rd Order Output Intercept Point (OIP3) (2)	-	+40	-	dBm	
Thermal Resistance	-	-	10	°C/W	
Current Consumption(3)(4)	200	212	225	mA	

Notes:

- (1) 112 channels, +34 dBmV per channel (measured at the output), 3 dB tilt, 6 MHz channel spacing.
- (2) Two tones: 500 MHz and 501 MHz, +4 dBm per tone.
- (3) Characterized with IADJ pin floating.
- (4) Adding a shunt resistor from the IADJ pin to ground will lower current, but with some decrease in performance.

PERFORMANCE DATA

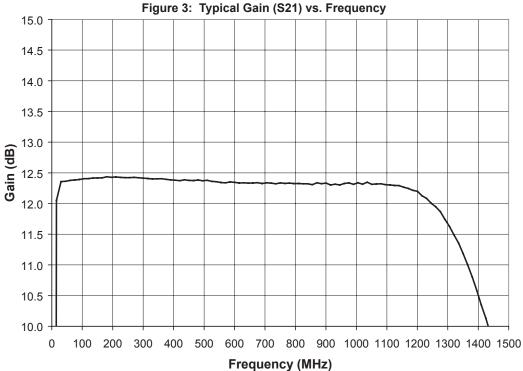


Figure 4: Typical Input and Output Return Loss (S11 and S22) vs. Frequency ♦ S11 -5 ■ S22 -10 -15 Return Loss (dB) -20 -25 -30 -35 -40 -45 -50 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 Frequency (MHz)

Figure 5: Typical Isolation (S12) vs. Frequency

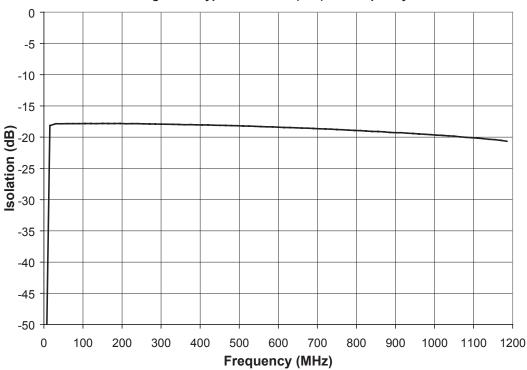


Figure 6: Typical Noise Figure vs. Frequency

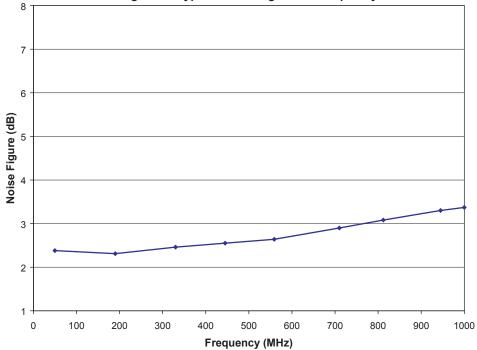


Figure 7: CTB vs. Frequency
112 Analog Channels, +34 dBmV Output Power, 3 dB Tilt @ 870 MHz, +8 V, 200 mA

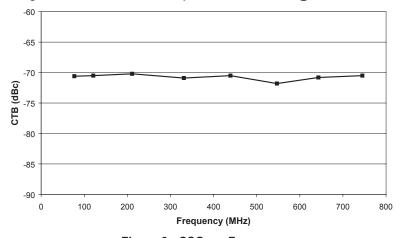


Figure 8: CSO vs. Frequency 112 Analog Channels, +34 dBmV Output Power, 3 dB Tilt @ 870 MHz, +8 V, 200 mA

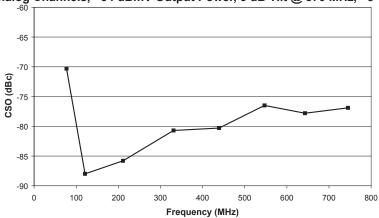
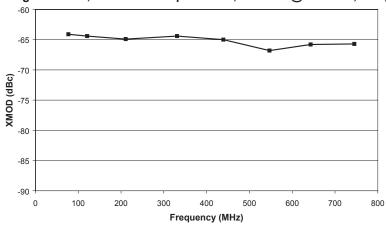



Figure 9: XMOD vs. Frequency
112 Analog Channels, +34 dBmV Output Power, 3 dB Tilt @ 870 MHz, +8 V, 200 mA

APPLICATION INFORMATION

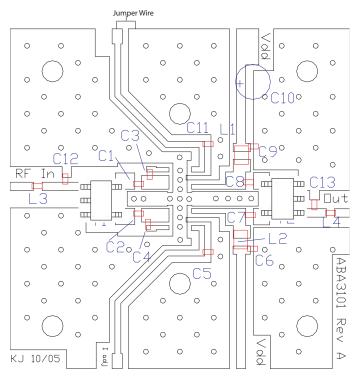


Figure 10: Evaluation Board Layout

Note: Pin 16 of the ABA3101 is connected to ground internally. Do not apply voltage to the V_{ADJ} input of the evaluation board.

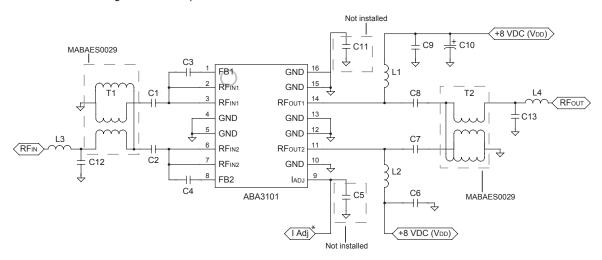


Figure 11: Evaluation Board Schematic

Note:

^{*} connecting a resistor from IADJ to ground lowers current; normal operation is with IADJ floating.

Table 5: Evaluation Board Parts List

ITEM DESCRIPTION		QTY	VENDOR	VENDOR PART NUMBER	
C1-C4, C6, C9	0.01uF CHIP CAP.	6	MURATA	GRM39X7R1103K25V	
C7, C8	330 pF CHIP CAP.	2	MURATA	GRM39COG471J25V	
C10	47 uF ELEC. CAP.	1	DIGI-KEY CORP	P5275-ND	
C5, C11	(not installed)				
C12, C13	1.0 pF CHIP CAP.	2	MURATA	GRM1885C1H1ROCZ01B	
L1, L2	470 nH CHIP INDUCTOR	2	MURATA	LQH1WA47KONOO03/4052	
L3, L4	5.6 nH CHIP INDUCTOR	2	токо	PTL2012-F5N6C	
CONNECTORS	75 Ω N MALE PANEL MOUNT	2	PASTERNACK ENTERPRISES	PE4504	
T1, T2	BALUN	2	MACOM	MABAES0029 ⁽⁴⁾	
	РСВ	1	STANDARD PRINTED CIRCUITS, INC.		

Notes:

- 1. "N" Connector center pin should be approximately 80 mils in length.
- 2. Connector tabs must be reduced by 150 mils.
- 3. Device must be soldered on PC board.

(4) MABAES0029 is not RoHS compliant. For RoHS, the user should evaluate M/A-COM MABACT0069 balun or other similar replacement.

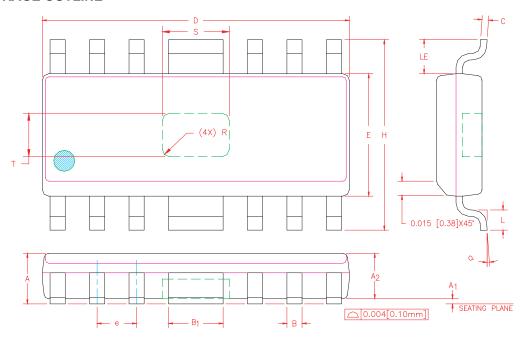


Figure 12: M/A-COM MABAES0029 Balun

Notes:

1. Consult M/A-COM data sheet for more details.

PACKAGE OUTLINE

SYMBOL	INCHES		MILLIM	NOTE	
POL.	MIN.	MAX.	MIN.	MAX.	.,
Α	0.058	0.068	1.47	1.73	
A1	0.000	0.004	0.00	0.10	7
A ₂	0.054	0.065	1.37	1.65	
В	0.013	0.020	0.33	0.50	
B ₁	0.062	0.070	1.58	1.78	
С	0.008	0.010	0.20	0.25	4
D	0.380	0.400	9.66	10.16	2
Ε	0.150	0.160	3.81	4.06	3
е	0.050 BSC		1.27 BSC		
Н	0.226 0.244		5.74	6.20	
L	0.016	0.040	0.41	1.02	
LE	0.030	_	0.76	_	
α	0,	8*	0.	8*	
S	0.070	0.100	1.78	2.54	6
Т	0.040	0.070	1.02	1.78	6
R	0.015 REF.		0.38	REF.	6

- 1. CONTROLLING DIMENSION: INCHES
- 2. DIMENSION "D" DOES NOT INCLUDE MOLD FLASH,
 PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS
 AND GATE BURRS SHALL NOT EXCEED 0.006 [0.15mm]
 PER SIDE.
- 3. DIMENSION "E" DOES NOT INCLUDE INTER-LEAD FLASH OR PROTRUSIONS. INTER-LEAD FLASH AND PROTRUSIONS SHALL NOT EXCEED 0.010 [0.25mm] PER SIDE.
- 4. MAXIMUM LEAD TWIST/SKEW TO BE ±0.005 [0.13mm].
- 5. LEAD THICKNESS AFTER PLATING TO BE 0.013 [0.33mm] MAXIMUM.
- 6. DIMENSIONS "S", "T" AND "R" INDICATE EXPOSED SLUG AREA.
- 7. A1 STAND OFF IS MEASURED FROM BOTTOM OF HEAT SLUG TO THE SEATING PLANE.

Figure 13: S33 Package Outline - Modified 16 Pin SOIC with Heat Slug

NOTES

ORDERING INFORMATION

ORDER NUMBER TEMPERATURE RANGE		PACKAGE DESCRIPTION	COMPONENT PACKAGING	
ABA3101RS33P1	-40 to +100 °C	RoHS Compliant Modified 16 Pin SOIC	3,500 piece Tape and Reel	

ANADIGICS, Inc.

141 Mount Bethel Road Warren, New Jersey 07059, U.S.A

Tel: +1 (908) 668-5000 Fax: +1 (908) 668-5132 http://www.anadigics.com Mktg@anadigics.com

IMPORTANT NOTICE

ANADIGICS, Inc. reserves the right to make changes to its products or to discontinue any product at any time without notice. The product specifications contained in Advanced Product Information sheets and Preliminary Data Sheets are subject to change prior to a product's formal introduction. Information in Data Sheets have been carefully checked and are assumed to be reliable; however, ANADIGICS assumes no responsibilities for inaccuracies. ANADIGICS strongly urges customers to verify that the information they are using is current before placing orders.

WARNING

ANADIGICS products are not intended for use in life support appliances, devices, or systems. Use of an ANADIGICS product in any such application without written consent is prohibited.