

CY62158DV

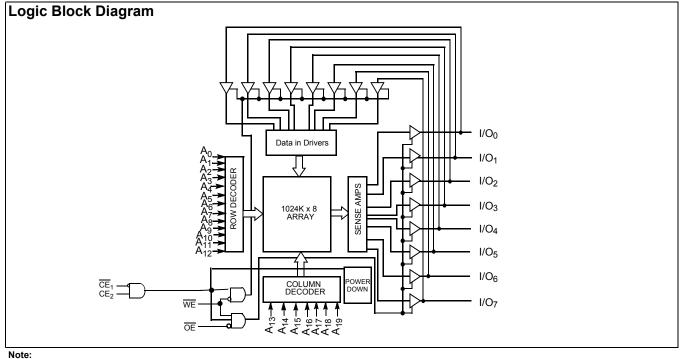
MoBL[®]

8 Mb (1024K x 8) MoBL[®] Static RAM

Features

- Very high speed: 55 ns
 Wide voltage range: 2.20V 3.60V
- Wide Voltage range. 2.20V
- Ultra-low active power
 - Typical active current:1.5 mA @ f = 1 MHz
- Typical active current: $12 \text{ mA} @ \text{f} = f_{\text{max}}(55 \text{-ns speed})$
- Ultra-low standby power
- Easy memory expansion with $\overline{\text{CE}}_1,$ $\text{CE}_2,$ and $\overline{\text{OE}}$ features
- Automatic power-down when deselected
- CMOS for optimum speed/power
- Packages offered in a 48-ball BGA, 48-pin TSOPI, and 44-pin TSOPII

Functional Description^[1]

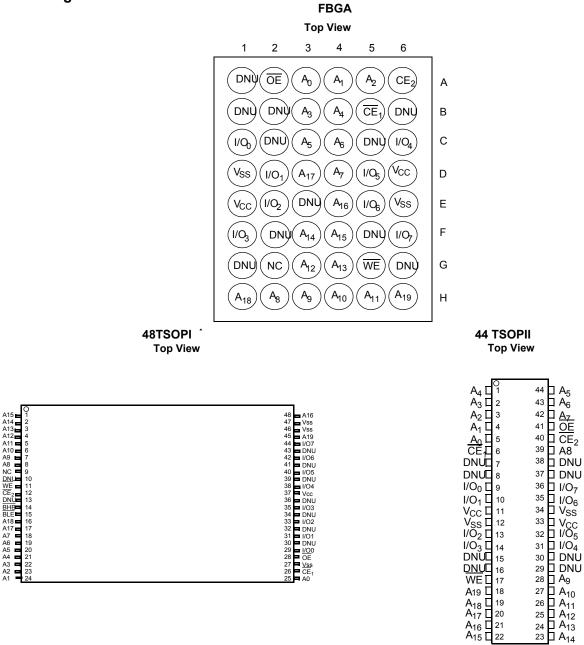

The CY62158DV is a high-performance CMOS static RAMs organized as 1024K words by 8 bits. This device features advanced circuit design to provide ultra-low active current.

This is ideal for providing More Battery LifeTM (MoBL[®]) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption. The device can be put into standby mode reducing power consumption by more than 99% when deselected (\overline{CE}_1 HIGH or CE_2 LOW).

<u>Writing</u> to the device is accomplished by taking Chip Enable 1 (CE₁) and Write Enable (WE) inputs LOW and Chip Enable 2 (CE₂) HIGH. Data on the eight I/O pins (I/O₀ through I/O₇) is then written into the location specified on the address pins (A₀ through A₁₉).

Reading from the device is accomplished by taking Chip Enable 1 (CE₁) and Output Enable (OE) LOW and Chip Enable 2 (CE₂) HIGH while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O₀ through I/O₇) are placed in a high-impedance state when the device is des<u>elected</u> (\overline{CE}_1 LOW and CE_2 HIGH), the <u>outputs</u> are disabled (\overline{OE} HIGH), or during a write operation (CE_1 LOW and CE_2 HIGH and WE LOW). See the truth table for a complete description of read and write modes.


1. For best practice recommendations, please refer to the Cypress application note entitled System Design Guidelines, available at http://www.cypress.com.

CY62158DV

MoBL[®]

Pin Configuration^[2,3]

Notes:

2. NC pins are not internally connected to the die.

3. DNU pins have to be left floating or tied to V_{SS} to ensure proper application.

CY62158DV

PRELIMINARY

MoBL[®]

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Supply Voltage to Ground Potential .–0.2V to $V_{cc(max)}$ + 0.2V
DC Voltage Applied to Outputs
DC Voltage Applied to Outputs in High-Z State ^[4] –0.2V to $V_{CC(max)}$ + 0.2V
DC Input Voltage ^[4] –0.2V to $V_{CC(max)}$ + 0.2V

Product Portfolio

Output Current into Outputs (LOW)...... 20 mA Static Discharge Voltage.....>2001V (per MIL-STD-883, Method 3015) Latch-up Current.....>200 mA

Operating Range

Product	Range	Ambient Temperature (T _A)	V_{CC^[5]}
CY62158DVL	Industrial	–40°C to +85°C	2.2V to 3.6V
CY62158DVLL			

					Power Dissipation			n		
					Operating	g I _{CC} (mA)				
	V _{CC} Range (V)		Speed	f = 1 MHz		f = f _{max}		Standby I _{SB2} (µA)		
Product	Min.	Typ. ^[6]	Max.	(ns)	Typ. ^[6]	Max.	Typ. ^[6]	Max.	Typ . ^[6]	Max.
CY62158DVL	2.2	3.0	3.6	55	1.5	3	12	20	2	20
CY62158DVLL	2.2	3.0	3.6	55	1.5	3	12	15	2	8

Electrical Characteristics Over the Operating Range

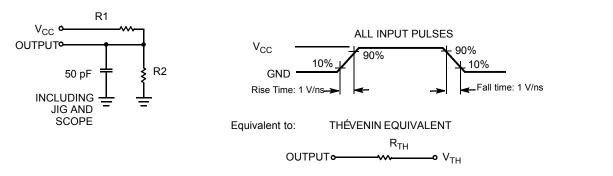
					(CY62158	DV-55	
Parameter	Description	Test Conditions			Min.	Typ . ^[6]	Max.	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = -0.1 mA V _{CC} = 2.20V			2.0			V
		I _{OH} = -1.0 mA	V _{CC} = 2.70V		2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 0.1 mA	V _{CC} = 2.20V				0.4	V
		I _{OL} = 2.1mA	V _{CC} = 2.70V				0.4	V
V _{IH} ^[7]	Input HIGH Voltage	V _{CC} = 2.2V to 2.7V	•		1.8		V _{CC} + 0.3V	V
		V _{CC} = 2.7V to 3.6V			2.2		V _{CC} + 0.3V	V
V _{IIL}	Input LOW Voltage	V _{CC} = 2.2V to 2.7V			-0.3		0.6	V
		V _{CC} = 2.7V to 3.6V					0.8	V
I _{IX}	Input Leakage Current	$GND \leq V_1 \leq V_{CC}$		-1		+1	μA	
I _{OZ}	Output Leakage Current	GND <u><</u> V _O <u><</u> V _{CC} , Output Disa		-1		+1	μA	
I _{CC}	V _{CC} Operating Supply	$f = f_{MAX} = 1/t_{RC}$	L		12	20	mA	
	Current		I _{OUT} = 0 mA CMOS levels	LL			15	mA
		f = 1 MHz		L		1.5	3	mA
				LL			3	mA
I _{SB1}	Automatic CE	$\overline{CE}_1 \ge V_{CC^-} 0.2V, CE_2 \le 0.2V$		L		2	20	μA
	Power-down Current — CMOS Inputs	$ \begin{array}{l} V_{IN} \geq V_{CC} - 0.2V, \ V_{IN} \leq 0.2V) \\ f = f_{MAX} (Address and Data Only), \\ f = 0 (OE, and WE), \ V_{CC} = 3.60V \end{array} $				2	8	
I _{SB2}	Automatic CE	$\overline{CE}_1 \ge V_{CC} - 0.2V \text{ or } CE_2 \le 0$		L		2	20	μA
	Power-down Current — CMOS Inputs	$V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2$ f = 0, V_{CC} = 3.60V	$V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2V,$				8	

Notes:

6. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ.)}$, $T_A = 25^{\circ}C$. 7. $V_{IH(max)} = V_{CC} + 0.75V$ for pulse duration less than 20ns.

 ^{4.} V_{IL}(min.) = -2.0V for pulse durations less than 20 ns.
 5. Full device AC operation requires linear Vcc ramp from 0 to Vcc(min) >= 500 μs.

MoBL[®]


Capacitance^[8]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ.)}$	8	pF

Thermal Resistance

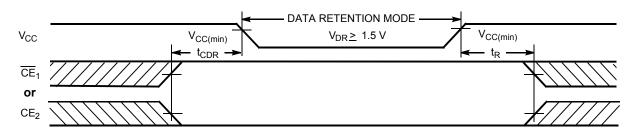
Parameter	Description	Test Conditions	BGA	TSOP II	TSOP I	Unit
Θ_{JA}	Thermal Resistance ^[8] (Junction to Ambient)	Still Air, soldered on a 3 x 4.5 inch, four-layer printed circuit board	55	TBD	TBD	°C/W
Θ ^{JC}	Thermal Resistance ^[8] (Junction to Case)		16	TBD	TBD	°C/W

AC Test Loads and Waveforms

Parameters	2.50V	3.0V	Unit
R1	16667	1103	Ω
R2	15385	1554	Ω
R _{TH}	8000	645	Ω
V _{TH}	1.20	1.75	V

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Min.	Typ . ^[6]	Max.	Unit		
V _{DR}	V _{CC} for Data Retention			1.5		2.2V	V
I _{CCDR}	Data Retention Current	$\underline{V_{CC}} = 1.5V$	L			10	μA
			LL			4	μΑ
t _{CDR} ^[8]	Chip Deselect to Data Retention Time			0			ns
t _R ^[9]	Operation Recovery Time			t _{RC}			ns


Notes:

8. Tested initially and after any design or process changes that may affect these parameters. 9. Full Device AC operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)} \ge 100 \,\mu$ s or stable at $V_{CC(min.)} \ge 100 \,\mu$ s.

MoBL[®]

Data Retention Waveform

Switching Characteristics Over the Operating Range ^[10]

		55	ns		
Parameter	Description	Min.	Max.	Unit	
Read Cycle					
t _{RC}	Read Cycle Time	55		ns	
t _{AA}	Address to Data Valid		55	ns	
СНА	Data Hold from Address Change	10		ns	
t _{ACE}	CE ₁ LOW and CE ₂ HIGH to Data Valid		55	ns	
t _{DOE}	OE LOW to Data Valid		25	ns	
t _{LZOE}	OE LOW to Low Z ^[11]	5		ns	
t _{HZOE}	OE HIGH to High Z ^[11, 12]		20	ns	
t _{LZCE}	CE ₁ LOW and CE ₂ HIGH to Low Z ^[11]	10		ns	
t _{HZCE}	CE ₁ HIGH or CE ₂ LOW to High Z ^[11, 12]		20	ns	
t _{PU}	CE ₁ LOW and CE ₂ HIGH to Power-Up	0		ns	
t _{PD}	CE ₁ HIGH or CE ₂ LOW to Power-Down		55	ns	
Write Cycle ^[13]					
twc	Write Cycle Time	55		ns	
t _{SCE}	CE ₁ LOW and CE ₂ HIGH to Write End	40		ns	
t _{AW}	Address Set-Up to Write End	40		ns	
t _{HA}	Address Hold from Write End	0		ns	
t _{SA}	Address Set-Up to Write Start	0		ns	
t _{PWE}	WE Pulse Width	40		ns	
t _{SD}	Data Set-Up to Write End 25			ns	
t HD	Data Hold from Write End 0			ns	
t _{HZWE}	WE LOW to High Z ^[11, 12] 20				
t _{LZWE}	WE HIGH to Low Z ^[11]	10		ns	

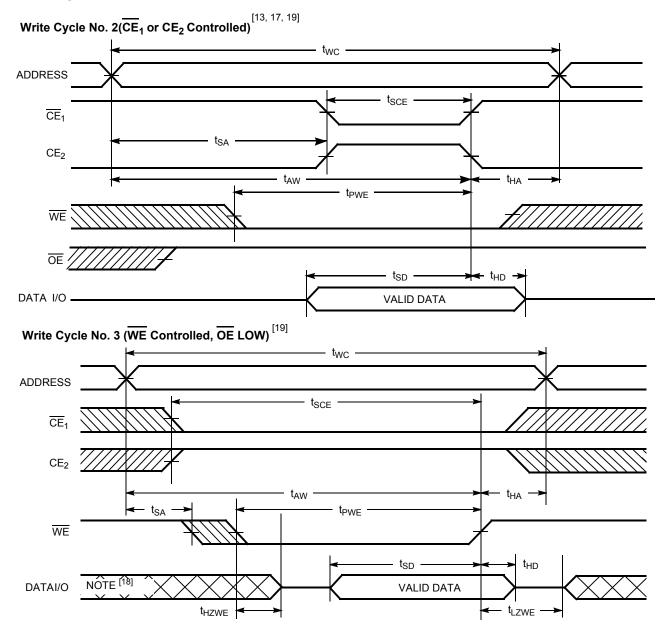
Notes:


Notes:
10. Test conditions for all parameters other than tri-state parameters assume signal transition time of 3ns or less (1V/ns), timing reference levels of V_{CC(typ.)}/2, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the specified I_{OL}/I_{OH} as shown in the "AC Test Loads and Waveforms" section.
11. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZCE}, and t_{HZWE} for any given device.
12. t_{HZOE}, t_{HZCE}, and t_{HZWE} transitions are measured when the outputs enter a high impedance state. Transition is measured +/-200mV from steady state voltage.
13. The internal write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write.

CY62158DV

MoBL[®]

Switching Waveforms


Notes: 14. <u>Dev</u>ice is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$, $CE_2 = V_{IH}$. 15. \overline{WE} is HIGH for read cycle. 16. Address valid prior to or coincident with \overline{CE}_1 transition LOW and CE_2 transition HIGH.

MoBL[®]

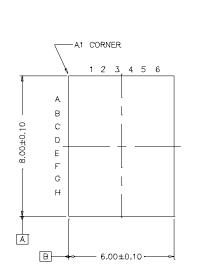
CY62158DV

Switching Waveforms (continued)

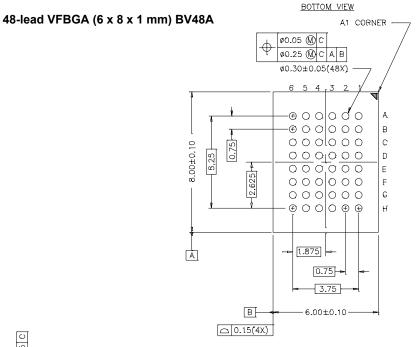
Truth Table

CE ₁	CE ₂	WE	OE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	High Z	Deselect/Power-down	Standby (I _{SB})
Х	L	Х	Х	High Z	Deselect/Power-down	Standby (I _{SB})
L	Н	Н	L	Data Out (I/O ₀ -I/O ₇)	Read	Active (I _{CC})
L	Н	Н	Н	High Z	Output Disabled	Active (Icc)
L	Н	L	Х	Data in (I/O ₀ -I/O ₇)	Write	Active (Icc)

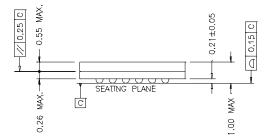
Notes:
17. Data I/O is high impedance if OE = V_{IH}.
18. During this period, the I/Os are in output state and input signals should not be applied.
19. If CE₁ goes HIGH or CE₂ goes LOW simultaneously with WE HIGH, the output remains in high-impedance state.



 $\mathsf{MoBL}^{\mathbb{R}}$

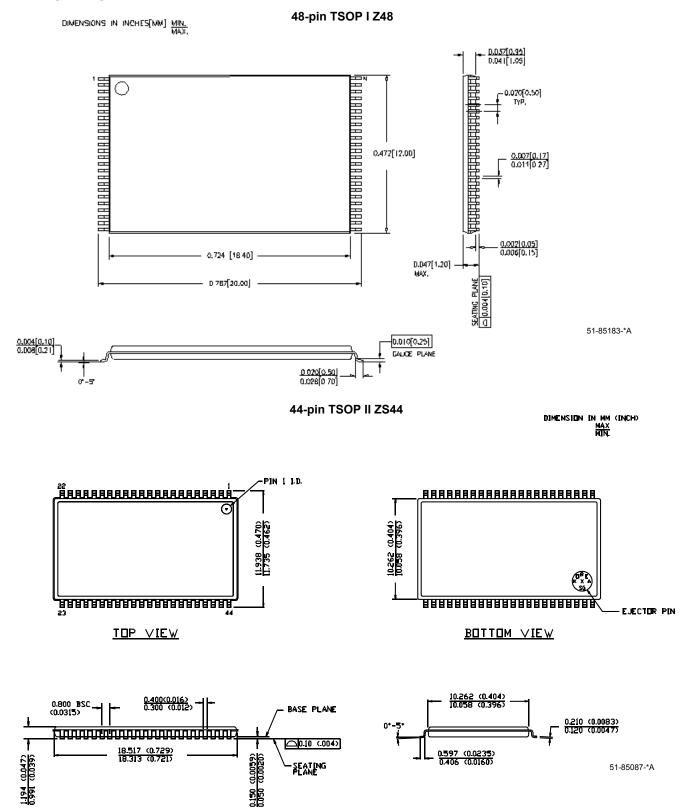

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
55	CY62158DVL-55BVI	BV48A	48-ball Fine Pitch BGA (6 mm × 8mm × 1 mm)	Industrial
	CY62158DVLL-55BVI			
55	CY62158DVL-55ZI	Z-48	48 Pin TSOP I	Industrial
	CY62158DVLL-55ZI			
55	CY62158DVL-55ZSI	ZS-44	44 Pin TSOP II	Industrial
	CY62158DVLL-55ZSI			


Package Diagrams

TOP VIEW

51-85150-*B



CY62158DV

MoBL[®]

Package Diagrams (continued)

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor. All product and company names mentioned in this document are trademarks of their respective holders.

Document #: 38-05391 Rev. *B

© Cypress Semiconductor Corporation, 2003. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

 $\textbf{MoBL}^{\mathbb{R}}$

Document History Page

Document Title:CY62158DV MoBL [®] 8 Mb (1024K x 8) MoBL [®] Static RAM Document Number: 38-05391							
REV. ECN NO. Issue Date Change			Description of Change				
**	126293	05/22/03	HRT	New Data Sheet			
*A	131014	11/25/03	CBD	Change from Advance to Preliminary			
*В	133114	01/24/04	CBD	Minor Change: MPN change and upload			