

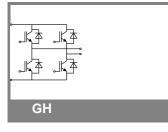

## SEMITOP<sup>®</sup> 2

**IGBT** Module

#### SK20GH123

Preliminary Data

#### Features


- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- High short circuit capability
- Low tail current with low temperature dependence
- UL recognized, file no. E63532

## **Typical Applications**

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

| Absolute            | Maximum Ratings                                       | T <sub>s</sub> =        | 25 °C, unless otherwise | specified |
|---------------------|-------------------------------------------------------|-------------------------|-------------------------|-----------|
| Symbol              | Conditions                                            |                         | Values                  | Units     |
| IGBT                |                                                       |                         |                         |           |
| V <sub>CES</sub>    | T <sub>j</sub> = 25 °C                                |                         | 1200                    | V         |
| I <sub>C</sub>      | T <sub>j</sub> = 125 °C                               | T <sub>s</sub> = 25 °C  | 23                      | A         |
|                     |                                                       | T <sub>s</sub> = 80 °C  | 15                      | А         |
| I <sub>CRM</sub>    | I <sub>CRM</sub> = 2 x I <sub>Cnom</sub>              |                         | 30                      | А         |
| V <sub>GES</sub>    |                                                       |                         | ± 20                    | V         |
| t <sub>psc</sub>    | $V_{CC}$ = 600 V; $V_{GE} \le 20$ V;<br>VCES < 1200 V | T <sub>j</sub> = 125 °C | 10                      | μs        |
| Inverse D           | Diode                                                 |                         |                         |           |
| I <sub>F</sub>      | T <sub>j</sub> = 150 °C                               | T <sub>s</sub> = 25 °C  | 24                      | А         |
|                     |                                                       | T <sub>s</sub> = 80 °C  | 17                      | А         |
| I <sub>FRM</sub>    | I <sub>FRM</sub> = 2 x I <sub>Fnom</sub>              |                         |                         | А         |
| I <sub>FSM</sub>    | t <sub>p</sub> = 10 ms; half sine wave                | T <sub>j</sub> = 150 °C | 180                     | А         |
| Module              |                                                       |                         |                         |           |
| I <sub>t(RMS)</sub> |                                                       |                         |                         | А         |
| T <sub>vj</sub>     |                                                       |                         | -40 +150                | °C        |
| T <sub>stg</sub>    |                                                       |                         | -40 +125                | °C        |
| V <sub>isol</sub>   | AC, 1 min.                                            |                         | 2500                    | V         |

| Characteristics T <sub>s</sub> =   |                                                  | 25 °C, unless otherwise specified                |      |           |      |          |
|------------------------------------|--------------------------------------------------|--------------------------------------------------|------|-----------|------|----------|
| Symbol                             | Conditions                                       |                                                  | min. | typ.      | max. | Units    |
| IGBT                               |                                                  |                                                  |      |           |      |          |
| V <sub>GE(th)</sub>                | $V_{GE}$ = $V_{CE}$ , $I_C$ = 0,6 mA             |                                                  | 4,5  | 5,5       | 6,5  | V        |
| I <sub>CES</sub>                   | $V_{GE}$ = 0 V, $V_{CE}$ = $V_{CES}$             | T <sub>j</sub> = 25 °C                           |      |           | 0,1  | mA       |
|                                    |                                                  | T <sub>j</sub> = 125 °C                          |      |           |      | mA       |
| I <sub>GES</sub>                   | V <sub>CE</sub> = 0 V, V <sub>GE</sub> = 30 V    | T <sub>j</sub> = 25 °C                           |      |           | 480  | nA       |
|                                    |                                                  | T <sub>j</sub> = 125 °C                          |      |           |      | nA       |
| V <sub>CE0</sub>                   |                                                  | T <sub>j</sub> = 25 °C                           |      | 1,2       |      | V        |
|                                    |                                                  | T <sub>j</sub> = 125 °C                          |      | 1,2       |      | V        |
| r <sub>CE</sub>                    | V <sub>GE</sub> = 15 V                           | T <sub>j</sub> = 25°C                            |      | 86        |      | mΩ       |
|                                    |                                                  | T <sub>j</sub> = 125°C                           |      | 126       |      | mΩ       |
| V <sub>CE(sat)</sub>               | I <sub>Cnom</sub> = 15 A, V <sub>GE</sub> = 15 V |                                                  | 2    | 2,5       | 3    | V        |
|                                    |                                                  | T <sub>j</sub> = 125°C <sub>chiplev.</sub>       |      | 3,1       | 3,7  | V        |
| C <sub>ies</sub>                   |                                                  |                                                  |      | 1         |      | nF       |
| C <sub>oes</sub>                   | $V_{CE}$ = 25, $V_{GE}$ = 0 V                    | f = 1 MHz                                        |      | 0,15      |      | nF       |
| C <sub>res</sub>                   |                                                  |                                                  |      | 0,07      |      | nF       |
| Q <sub>G</sub>                     | V <sub>GE</sub> =0 20 V                          |                                                  |      | 90        |      | nC       |
| t <sub>d(on)</sub>                 |                                                  |                                                  |      | 35        |      | ns       |
| t <sub>r</sub>                     | R <sub>Gon</sub> = 40 Ω                          | V <sub>CC</sub> = 600V                           |      | 45        |      | ns       |
| E <sub>on</sub>                    | <b>D</b> (0.0                                    | I <sub>C</sub> = 15A                             |      | 2         |      | mJ       |
| t <sub>d(off)</sub>                | $R_{Goff}$ = 40 $\Omega$                         | T <sub>j</sub> = 125 °C<br>V <sub>GE</sub> =±15V |      | 250<br>70 |      | ns       |
| t <sub>f</sub><br>E <sub>off</sub> |                                                  | GE-TIO                                           |      | 1,8       |      | ns<br>mJ |
| R <sub>th(j-s)</sub>               | per IGBT                                         |                                                  |      | .,•       | 1,4  | K/W      |





## SEMITOP<sup>®</sup> 2

**IGBT** Module

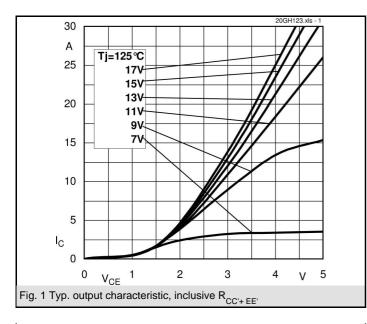
#### SK20GH123

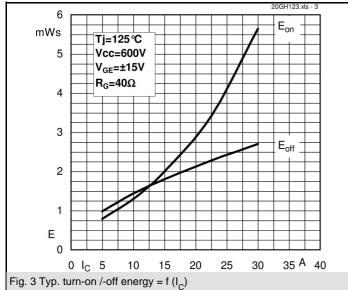
Preliminary Data

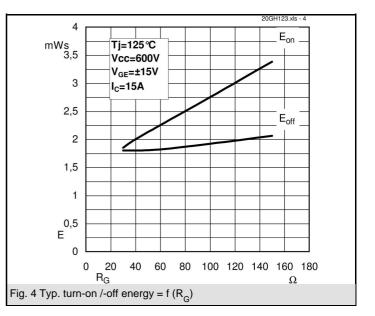
#### Features

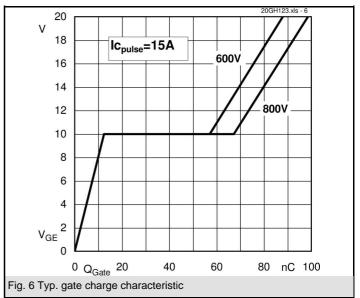
- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- High short circuit capability
- Low tail current with low temperature dependence
- UL recognized, file no. E63532

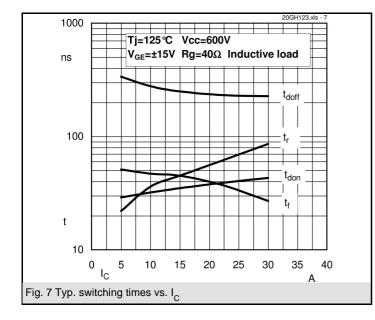
### **Typical Applications**


- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS


| Characteristics       |                                                 |                                             |      |      |      |       |  |
|-----------------------|-------------------------------------------------|---------------------------------------------|------|------|------|-------|--|
| Symbol                | Conditions                                      |                                             | min. | typ. | max. | Units |  |
| Inverse D             | ode                                             |                                             |      |      |      | •     |  |
| $V_F = V_{EC}$        | I <sub>Fnom</sub> = 15 A; V <sub>GE</sub> = 0 V | T <sub>j</sub> = 25 °C <sub>chiplev.</sub>  |      | 2    | 2,5  | V     |  |
|                       |                                                 | T <sub>j</sub> = 125 °C <sub>chiplev.</sub> |      | 1,8  | 2,3  | V     |  |
| V <sub>F0</sub>       |                                                 | T <sub>j</sub> = 125 °C                     |      | 1    | 1,2  | V     |  |
| r <sub>F</sub>        |                                                 | T <sub>j</sub> = 125 °C                     |      | 53   | 73   | mΩ    |  |
| I <sub>RRM</sub>      | I <sub>F</sub> = 15 A                           | T <sub>i</sub> = 125 °C                     |      | 16   |      | А     |  |
| Q <sub>rr</sub>       | di/dt = -200 A/µs                               |                                             |      | 2,7  |      | μC    |  |
| E <sub>rr</sub>       | V <sub>CC</sub> = 600V                          |                                             |      | 0,6  |      | mJ    |  |
| R <sub>th(j-s)D</sub> | per diode                                       |                                             |      |      | 1,7  | K/W   |  |
| M <sub>s</sub>        | to heat sink M1                                 |                                             |      |      | 2    | Nm    |  |
| w                     |                                                 |                                             |      | 21   |      | g     |  |


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.


# GH

