November 2000

Revised January 2001

FAIRCHILD

SEMICONDUCTOR

FIN1019 3.3V LVDS High Speed Differential Driver/Receiver (Preliminary)

General Description

This driver and receiver pair are designed for high speed interconnects utilizing Low Voltage Differential Signaling (LVDS) technology. The driver translates LVTTL signals to LVDS levels with a typical differential output swing of 350mV and the receiver translates LVDS signals, with a typical differential input threshold of 100mV, into LVTTL levels. LVDS technology provides low EMI at ultra low power dissipation even at high frequencies. This device is ideal for high speed clock or data transfer.

Features

- Greater than 400Mbs data rate
- 3.3V power supply operation
- 0.5ns maximum differential pulse skew
- 2.5ns maximum propagation delay
- Low power dissipation
- Power OFF protection
- 100mV receiver input sensitivity
- Fail safe protection open-circuit, shorted and terminated conditions
- Meets or exceeds the TIA/EIA-644 LVDS standard
- Flow-through pinout simplifies PCB layout
- 14-Lead SOIC and TSSOP packages save space

Ordering Code:

Order Number	Package Number	Package Description	
FIN1019M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow	
FIN1019MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide	
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.			

Outputs

RO

L

Н

Ζ

Н

DO-

Н

L

Ζ

Н

X = Don't Care

DO+

L

Н

Ζ

L

Fail Safe = Open, Shorted, Terminated

Function Table

Fail Safe Condition

DI

L

Н

Х

Open-Circuit or Z

H = HIGH Logic Level

Z = High Impedance

RI+

L

н

Χ

Inputs

RI-

Н

L

Х

RE

L

L

Н

Ι

DE

Н

Н

L

н

L = LOW Logic Level

Connection Diagram

Pin Descriptions

Pin Name	Description
DI	LVTTL Data Input
DO+	Non-inverting LVDS Output
DO-	Inverting LVDS Output
DE	Driver Enable (LVTTL, Active HIGH)
RI+	Non-Inverting LVDS Input
RI–	Inverting LVDS Input
RO	LVTTL Receiver Output
RE	Receiver Enable (LVTTL, Active LOW)
V _{CC}	Power Supply
GND	Ground

FIN1019

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +4.6V
LVTTL DC Input Voltage (DI, DE, RE)	-0.5V to +6V
LVDS DC Input Voltage (RI+, RI–)	-0.5V to 4.7V
LVTTL DC Output Voltage (RO)	-0.5V to +6V
LVDS DC Output Voltage (DO+, DO-)	-0.5V to 4.7V
LVDS Driver Short Circuit Current (IOSD)	Continuous
LVTTL DC Output Current (I _O)	16 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Max Junction Temperature (T _J)	150°C
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C
ESD (Human Body Model)	≥ 2000V
ESD (Machine Model)	≥ 200V

Recommended Operating Conditions

Supply Voltage (V _{CC})	3.0V to 3.6V
Input Voltage (V _{IN})	0 to V_{CC}
Magnitude of Differential Voltage	
(V _{ID})	100 mV to V_{CC}
Common-Mode Input Voltage (VIC)	0.05V to 2.35V
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$

Note 1: The "Absolute Maximum Ratings": are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature and output/input loading variables. Fairchild does not recommend operation of circuits outside databook specification.

DC Electrical Characteristics

Over supply voltage and operating temperature ranges, unless otherwise specified

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
				(Note 2)		L
LVDS Differential Driver Characteristics						
V _{OD}	Output Differential Voltage	_	250	350	450	mv
ΔV _{OD}					25	mV
	Differential LOW-to-HIGH	$R_{L} = 100\Omega$, See Figure 1	4.405	1.05	4 075	
Vos	Offset Voltage	4	1.125	1.25	1.375	V
ΔV_{OS}	Offset Magnitude Change from				25	mV
	Differential LOW-to-HIGH					
I _{OZD}	Disabled Output Leakage Current	$V_{OUT} = V_{CC}$ or GND, DE = 0V			±20	μΑ
I _{OFF}	Power Off Output Current	$V_{CC} = 0V, V_{OUT} = 0V \text{ or } 3.6V$			±20	μΑ
I _{OS}	Short Circuit Output Current	$V_{OUT} = 0V, DE = V_{CC}$			-8	mA
		$V_{OD} = 0V, DE = V_{CC}$			±6	
LVTTL Driv	er Characteristics					
V _{OH}	Output HIGH Voltage	$I_{OH} = -100 \ \mu A$, $\overline{RE} = 0V$,	V 00		1	
		See Figure 6 and Table 1	V _{CC} -0.2		1	
		$I_{OH} = -8 \text{ mA}, \overline{RE} = 0V, V_{ID} = 400 \text{ mV}$			·	V
		$V_{ID} = 400 \text{ mV}, V_{IC} = 1.2 \text{V}$, see Figure 6	2.4		l	
V _{OL}	Output LOW Voltage	$I_{OL} = 100 \ \mu A, \ \overline{RE} = 0V, \ V_{ID} = -400 \ mV$				
		See Figure 6 and Table 1			0.2	N/
		$I_{OL} = -8 \text{ mA}, \overline{RE} = 0 \text{V}, \text{V}_{ID} = -400 \text{ mV}$				v
		$V_{ID} = -400$ mV, $V_{IC} = 1.2$ V, see Figure 6			0.5	
I _{OZ}	Disabled Output Leakage Current	$V_{OUT} = V_{CC}$ or GND, $\overline{RE} = V_{CC}$			±20	μΑ
LVDS Rece	iver Characteristics					·
V _{TH}	Differential Input Threshold HIGH	See Figure 6 and Table 1			100	mV
V _{TL}	Differential Input Threshold LOW	See Figure 6 and Table 1	-100			mV
I _{IN}	Input Current	$V_{IN} = 0V \text{ or } V_{CC}$			±20	μA
I _{I(OFF)}	Power-OFF Input Current	$V_{CC} = 0V, V_{IN} = 0V \text{ or } 3.6V$			±20	μΑ
LVTTL Driv	er and Control Signals Characteristic	s				·
V _{IH}	Input HIGH Voltage		2.0		V _{CC}	V
V _{IL}	Input LOW Voltage		GND		0.8	V
I _{IN}	Input Current	$V_{IN} = 0V \text{ or } V_{CC}$			±20	μΑ
I _{I(OFF)}	Power-OFF Input Current	$V_{CC} = 0V, V_{IN} = 0V \text{ or } 3.6V$			±20	μΑ
VIK	Input Clamp Voltage	I _{IK} = -18 mA	-1.5			V

FIN1019

Device Ch	aracteristics					
	Power Supply Current	iver Enabled Driver Load: R ₁ = 100 O		1	r	1
-00	References and the second seco	preiver Disabled No Receiver Load			14	mA
		iver Enabled, Driver Load: RL = 100.0			-	-
	B	aceiver Enabled ($RI_{+} = 11/$ and $RI_{-} = 1.41/$)			20	mΔ
		($PL = 1.4$) and $PO = 1$)			20	IIIA
		iver Disabled Receiver Enabled				
	(R	$I_{+} = 1V$ and $RI_{-} = 1.4V$) or			13.5	mA
	(r.	L = 1.4V and $RL = 1.4V$			10.0	IIIA
		iver Disabled Receiver Disabled			9	mA
C····	Input Capacitance Ar	WEI Disabled, Receiver Disabled		3	5	nE
Caura	Output Capacitance	Any LVTTL or LVDS Input		5		pi pE
Noto 2: All	turpical values are at $T = 25^{\circ}C$ and with $V = 2$			5		μr
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unite
Gymbol	i alameter	Test conditions		(Note 3)		Onits
Driver Tim	ing Characteristics					
t _{PLHD}	Differential Propagation Delay		0.5		15	ns
	LOW-to-HIGH		0.0			10
t _{PHLD}	Differential Propagation Delay		0.5		1.5	ns
	HIGH-to-LOW	$R_{L} = 100 \Omega, C_{L} = 10 \text{ pF},$				
t _{TLHD}	Differential Output Rise Time (20% to 80%)	See Figure 2 and Figure 3	0.4		1.0	ns
t _{THLD}	Differential Output Fall Time (80% to 20%)		0.4		1.0	ns
t _{SK(P)}	Pulse Skew t _{PLH} - t _{PHL}				0.5	ns
t _{SK(PP)}	Part-to-Part Skew (Note 4)				1.0	ns
t _{ZHD}	Differential Output Enable Time from Z to H	IGH $R_L = 100\Omega$, $C_L = 10 \text{ pF}$,			5.0	ns
t _{ZLD}	Differential Output Enable Time from Z to L	OW See Figure 4 and Figure 5			5.0	ns
t _{HZD}	Differential Output Disable Time from HIGH	to Z			5.0	ns
		to 7			5.0	ns
t _{LZD}	Differential Output Disable Time from LOW	10 2			0.0	
t _{LZD} Receiver T	Differential Output Disable Time from LOW				0.0	
t _{LZD} Receiver T	Differential Output Disable Time from LOW riming Characteristics Propagation Delay LOW-to-HIGH		1.0		2.5	ns
t _{LZD} Receiver T t _{PLH} t _{PHL}	Differential Output Disable Time from LOW Timing Characteristics Propagation Delay LOW-to-HIGH Propagation Delay HIGH-to-LOW		1.0 1.0		2.5 2.5	ns ns
t _{LZD} Receiver T t _{PLH} t _{PHL} t _{TLH}	Differential Output Disable Time from LOW Timing Characteristics Propagation Delay LOW-to-HIGH Propagation Delay HIGH-to-LOW Output Rise time (20% to 80%)	V _{ID} = 400 mV, C _L = 10 pF,	1.0 1.0	0.5	2.5 2.5	ns ns ns
t _{LZD} Receiver T t _{PLH} t _{PHL} t _{TLH} t _{THL}	Differential Output Disable Time from LOW Timing Characteristics Propagation Delay LOW-to-HIGH Propagation Delay HIGH-to-LOW Output Rise time (20% to 80%) Output Fall time (80% to 20%)	V _{ID} = 400 mV, C _L = 10 pF, See Figure 6 and Figure 7	1.0 1.0	0.5	2.5	ns ns ns ns
t _{LZD} Receiver 1 t _{PLH} t _{PHL} t _{TLH} t _{THL} t _{SK(P)}	Differential Output Disable Time from LOW Timing Characteristics Propagation Delay LOW-to-HIGH Propagation Delay HIGH-to-LOW Output Rise time (20% to 80%) Output Fall time (80% to 20%) Pulse Skew t _{PLH} - t _{PHL} Pulse Skew t _{PLH} - t _{PHL}	V _{ID} = 400 mV, C _L = 10 pF, See Figure 6 and Figure 7	1.0	0.5	2.5 2.5 0.5	ns ns ns ns ns
t _{LZD} Receiver 1 t _{PLH} t _{PHL} t _{TLH} t _{THL} t _{SK(P)} t _{SK(PP)}	Differential Output Disable Time from LOW Timing Characteristics Propagation Delay LOW-to-HIGH Propagation Delay HIGH-to-LOW Output Rise time (20% to 80%) Output Fall time (80% to 20%) Pulse Skew t _{PLH} - t _{PHL} Part-to-Part Skew (Note 4)	V _{ID} = 400 mV, C _L = 10 pF, See Figure 6 and Figure 7	1.0	0.5	2.5 2.5 0.5 1.0	ns ns ns ns ns ns
t _{LZD} Receiver 1 t _{PLH} t _{PHL} t _{TLH} t _{THL} t _{SK(P)} t _{SK(PP)} t _{ZH}	Differential Output Disable Time from LOW Timing Characteristics Propagation Delay LOW-to-HIGH Propagation Delay HIGH-to-LOW Output Rise time (20% to 80%) Output Fall time (80% to 20%) Pulse Skew t _{PLH} - t _{PHL} Part-to-Part Skew (Note 4) LVTTL Output Enable Time from Z to HIGH	V _{ID} = 400 mV, C _L = 10 pF, See Figure 6 and Figure 7	1.0	0.5	2.5 2.5 0.5 1.0 5.0	ns ns ns ns ns ns ns
tLZD Receiver 1 tPLH tPHL tTLH tTLH tSK(P) tSK(PP) tZH tZL	Differential Output Disable Time from LOW Timing Characteristics Propagation Delay LOW-to-HIGH Propagation Delay HIGH-to-LOW Output Rise time (20% to 80%) Output Fall time (80% to 20%) Pulse Skew t _{PLH} - t _{PHL} Part-to-Part Skew (Note 4) LVTTL Output Enable Time from Z to HIGH LVTTL Output Enable Time from Z to LOW	$ V_{ID} = 400 \text{ mV}, C_L = 10 \text{ pF},$ See Figure 6 and Figure 7 R _L = 500 Ω, C _L = 10 pF,	1.0	0.5	2.5 2.5 0.5 1.0 5.0 5.0	ns ns ns ns ns ns ns ns
tLZD Receiver 1 tPLH tPHL tTLH tTLH tTHL tSK(P) tSK(PP) tZH tZL tHZ	Differential Output Disable Time from LOW Timing Characteristics Propagation Delay LOW-to-HIGH Propagation Delay HIGH-to-LOW Output Rise time (20% to 80%) Output Fall time (80% to 20%) Pulse Skew t _{PLH} - t _{PHL} Part-to-Part Skew (Note 4) LVTTL Output Enable Time from Z to HIGH LVTTL Output Enable Time from Z to LOW LVTTL Output Disable Time from HIGH to 2	$ V_{ID} = 400 \text{ mV}, C_L = 10 \text{ pF},$ See Figure 6 and Figure 7 R _L = 500 Ω, C _L = 10 pF, See Figure 8	1.0	0.5	2.5 2.5 0.5 1.0 5.0 5.0 5.0	ns ns ns ns ns ns ns ns ns

Note 4: t_{SK(PP)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices switching in the same direction (either LOW-to-HIGH or HIGH-to-LOW) when both devices operate with the same supply voltage, same temperature, and have identical test circuits.

www.fairchildsemi.com

4

FIN1019

Note A: Input pulses have frequency = 10 MHz, $t_R \mbox{ or } t_F = 1 \mbox{ns}$

Note B: \mathbf{C}_{L} includes all probe and jig capacitance

FIGURE 6. Differential Receiver Voltage Definitions and Propagation Delay and Transition Time Test Circuit

Applied Voltages (V)		Resulting Differential	Resulting Common Mode
		Input Voltage (mV)	Input Voltage (V)
VIA	V _{IB}	V _{ID}	V _{IC}
1.25	1.15	100	1.2
1.15	1.25	-100	1.2
2.4	2.3	100	2.35
2.3	2.4	-100	2.35
0.1	0	100	0.05
0	0.1	-100	0.05
1.5	0.9	600	1.2
0.9	1.5	-600	1.2
2.4	1.8	600	2.1
1.8	2.4	-600	2.1
0.6	0	600	0.3
0	0.6	-600	0.3

www.fairchildsemi.com

www.fairchildsemi.com