

Specification

Acrich2 - Bulb

120V 13W

SMJE-2V12W1P3

SS	SC	Customer
Drawn Approval		Approval

Acrich2 - 120V 13W Bulb

Description

The Acrich 2 series of products are designed to be driven directly off of AC line voltage, therefore they do not need the standard converter essential for conventional general lighting products.

The converter or driver found in most general lighting products can limit the overall life of the product, but with the Acrich 2 series of products the life of the product can more closely be estimated from the LED itself.

This will also allow for a much smaller form factor from an overall fixture design allowing for higher creativity in the fixture.

The modules have a high power factor which can contribute to a higher energy savings in the end application.

Acrich2

Features

- Connects directly to AC line voltage
- High Power Efficiency
- High Power Factor
- Low THD
- Long Life Time
- Simple BOM
- Miniaturization
- Lead Free product
- RoHS compliant

Applications

- Bulb light
- Down light
- Factory Ceiling light
- Industrial Light

[Contents]

1.	Characteristics 4
2.	Thermal Resistance 7
3.	Color spectrum 8
4.	Power characteristics 10
5.	Radiation Pattern 11
6.	Color & Binning 12
7.	Marking 15
8.	Outline dimensions 15
9.	Circuit Drawing 16
10.	Packing 17
11.	Caution for use 18
12.	Handling of silicone resin for LEDs 18
13.	Handling with regards to static electricity 19
14.	Storage before use 19
15.	Guidelines for properly working with Acrich module 19

1. Characteristics

1-1-1. Electro-Optical characteristics of SMJE-2V12W1P3-B rank

Parameter	Symphol		Unit		
Parameter	Symbol	Min	Тур	Max	Unit
Luminous Flux [2]	Φ _V [3]	970	1000		lm
Correlated Color Temperature ^[4]	ССТ	5300	5600	6000	К
CRI	R _a	80	-	-	-
Operating Voltage [5]	V _{opt}	120			V[RMS]
Power Dissipation	P _D	12.5	13	13.3	W
Operating Frequency	Freq	50 / 60		Hz	
Power Factor	PF	Over 0.95		-	
View Angle	20 1/2		120		deg.

1-1-2. Electro-Optical characteristics of SMJE-2V12W1P3-C rank

Parameter	Symphol		Unit		
Parameter	Symbol	Min	Тур	Max	Unit
Luminous Flux ^[2]	Φ _V [3]	940	970		lm
Correlated Color Temperature ^[4]	ССТ	4700	5000	5300	К
CRI	R _a	80	-	-	-
Operating Voltage [5]	V opt	120		V[RMS]	
Power Dissipation	P_D	12.5	13	13.3	W
Operating Frequency	Freq	50 / 60		Hz	
Power Factor	PF	Over 0.95		-	
View Angle	2Θ 1/2		120		deg.

1-1-3. Electro-Optical characteristics of SMJE-2V12W1P3-E rank

Davameter	Symphol		Unit		
Parameter	Symbol	Min	Тур	Max	Unit
Luminous Flux [2]	Φ _V [3]	920	950	-	lm
Correlated Color Temperature ^[4]	ССТ	3700	4000	4200	K
CRI	R _a	80	-	-	-
Operating Voltage [5]	V _{opt}	120		V[RMS]	
Power Dissipation	P _D	12.5	13	13.3	W
Operating Frequency	Freq	50 / 60		Hz	
Power Factor	PF	Over 0.95		-	
View Angle	2Θ 1/2		120		deg.

1-1-4. Electro-Optical characteristics of SMJE-2V12W1P3-G rank

Davameter	Cymphol		Unit		
Parameter	Symbol	Min	Тур	Max	Unit
Luminous Flux ^[2]	Φ _V [3]	900	930	-	lm
Correlated Color Temperature ^[4]	ССТ	2900	3000	3200	К
CRI	R _a	80	-	-	-
Operating Voltage [5]	V _{opt}	120		V[RMS]	
Power Dissipation	P _D	12.5	13	13.3	W
Operating Frequency	Freq	50 / 60		Hz	
Power Factor	PF	Over 0.95		-	
View Angle	2Θ 1/2		120		deg.

1-1-5. Electro-Optical characteristics of SMJE-2V12W1P3-H rank

Davameter	Cymphol		llmit		
Parameter	Symbol	Min	Тур	Max	Unit
Luminous Flux [2]	Φ _V [3]	880	910		lm
Correlated Color Temperature ^[4]	ССТ	2600	2700	2900	К
CRI	R _a	80	-	-	-
Operating Voltage [5]	V _{opt}	120			V[RMS]
Power Dissipation	P _D	12.5	13	13.3	W
Operating Frequency	Freq	50 / 60		Hz	
Power Factor	PF	Over 0.95		-	
View Angle	2Θ 1/2		120		deg.

1-2. Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Max. Voltage	$V_{ m opt}$	140	V[RMS]
Power Dissipation	P_d	17.5	W
Operating Temperature	T _{opr}	-30 ~ 85	°C
Storage Temperature	T _{stg}	-40 ~ 100	°C
ESD Sensitivity	-	±4,000V HBM	-

* Notes:

- [1] At 120V RMS, Ta=25℃
- [2] Acrich 2 series maintain the tolerance of $\pm 10\%$ on flux and power measurements.
- [3] Φ_V is the total luminous flux output measured with an integrated sphere.
- [4] Correlated Color Temperature is derived from the CIE 1931 Chromaticity diagram.
- [5] Operating Voltage doesn't indicate the maximum voltage which customers use but means tolerable voltage according to each country's voltage variation rate. It is recommended that the solder pad temperature should be below 70°C.

2. Thermal Resistance

Part	Package Power Dissipation [W]	Maximum Junction Temp[℃]	Rθ _{j-s} [℃/W]
Acrich2 LED	SAW8KG0B Max 0.5	125	27
Acrich2 IC	Max 1.0	125	16.4

The Acrich2 LED has a thermal resistance of 27 ℃/W from junction of the LED to the LED lead.

The maximum junction temperature of the Acrich2 LED package is 125 $^\circ$ C, therefore the maximum lead temperature T $_s$ max is

$$T_{s_{max}} = T_{j_{max}} - (R\theta_{j-s} * P_D)$$

= 125°C - (27°C/W * 0.5W) = 111.5°C

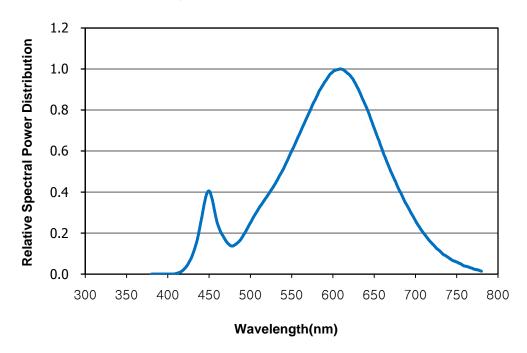
Although this is the maximum lead temperature, it is recommended to keep the lead temperature under 70 $^{\circ}\text{C}$

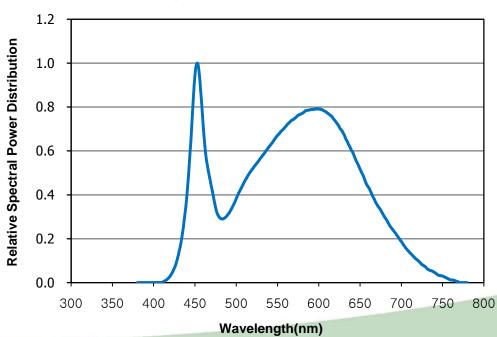
The Acrich2 IC has a 16.4degC/W thermal resistance from junction to the top surface.

The maximum junction temperature (T_{t_max}) of the IC is 125 $^{\circ}$ C, therefore the maximum temperature of the top of the IC is

$$T_{t_max} = T_{j_max} - (\psi_{j-t} * P_D)$$

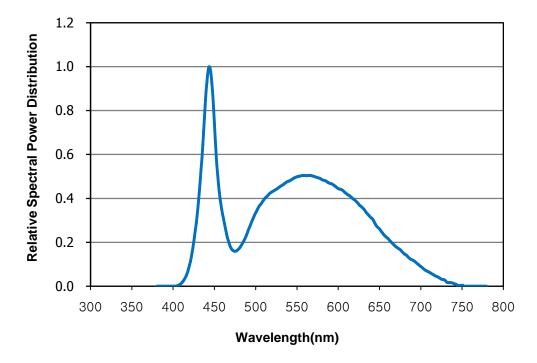
= 125°C - (16.4°C/W * 1.0W) = 108.6°C





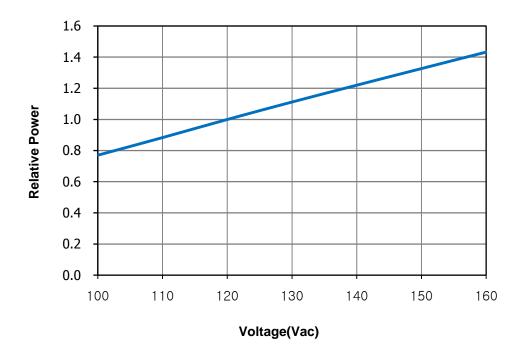
3. Color spectrum

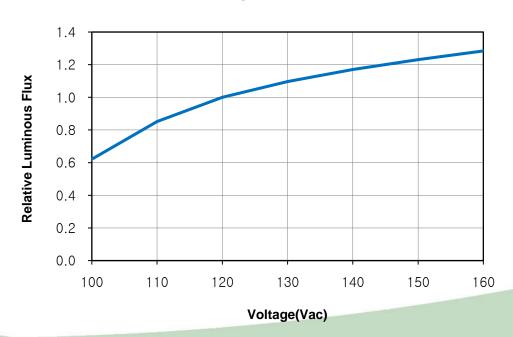
Warm-White Relative Spectral Power Distribution at Ta=25 ℃



Neutral-White Relative Spectral Power Distribution at Ta=25 ℃

Cool-White Relative Spectral Power Distribution at Ta=25 ℃

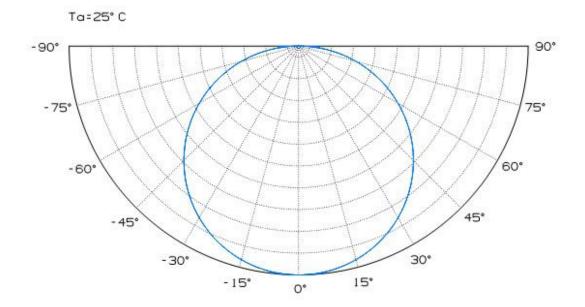




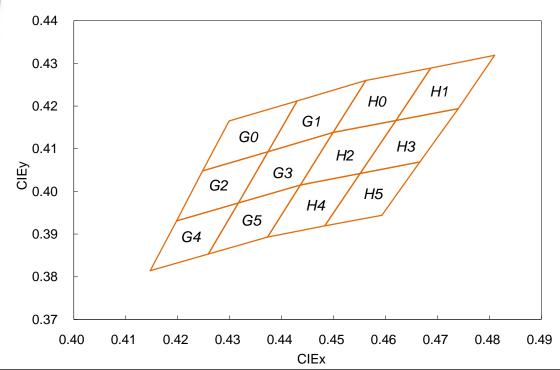
4. Power characteristic

Relative Power Distribution vs. Voltage at Ta=25 ℃

Relative Luminous Flux vs. Voltage at Ta=25 ℃

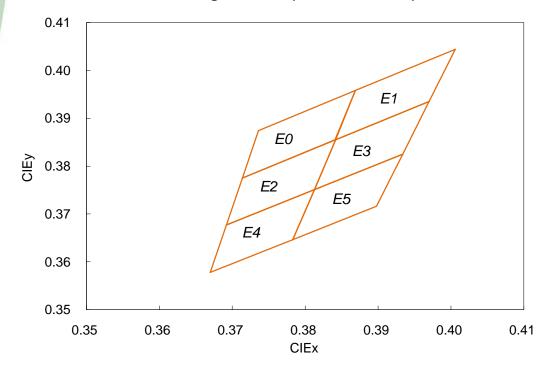


5. Radiation Pattern

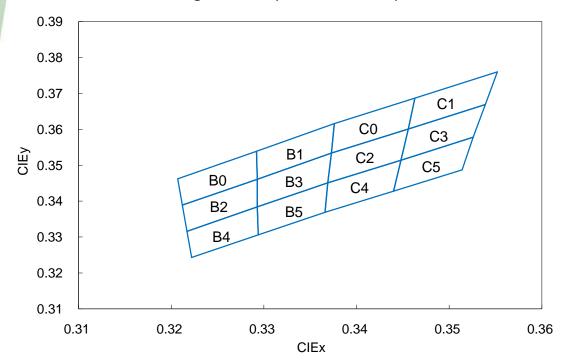


6. Color & Binning

6-1. Warm White binning structure (2,600K to 3,200K)


Bin code	Х	Υ	Bin code	Х	Y	Bin code	Х	Y
	0.4299	0.4165		0.4430	0.4212		0.4248	0.4048
00	0.4248	0.4048]	0.4374	0.4093		0.4198	0.3931
G0	0.4374	0.4093	G1	0.4499	0.4138	G2	0.4317	0.3973
	0.4430	0.4212		0.4562	0.4260		0.4374	0.4093
	0.4374	0.4093		0.4198	0.3931		0.4317	0.3973
00	0.4317	0.3973]	0.4147	0.3814	0.5	0.4259	0.3853
G3	0.4436	0.4015	G4	0.4259	0.3853	G5	0.4373	0.3893
	0.4499	0.4138		0.4317	0.3973		0.4436	0.4015
	0.4562	0.4260		0.4687	0.4289	H2	0.4499	0.4138
110	0.4499	0.4138] ,,,	0.4620	0.4166		0.4436	0.4015
H0	0.4620	0.4166	H1	0.4740	0.4194		0.4551	0.4042
	0.4687	0.4289		0.4810	0.4319		0.4620	0.4166
	0.4620	0.4166		0.4436	0.4015		0.4551	0.4042
Н3	0.4551	0.4042] ,,,	0.4373	0.3893	H5	0.4483	0.3919
	0.4666	0.4069	H4	0.4483	0.3919		0.4593	0.3944
	0.4740	0.4194]	0.4551	0.4042		0.4666	0.4069

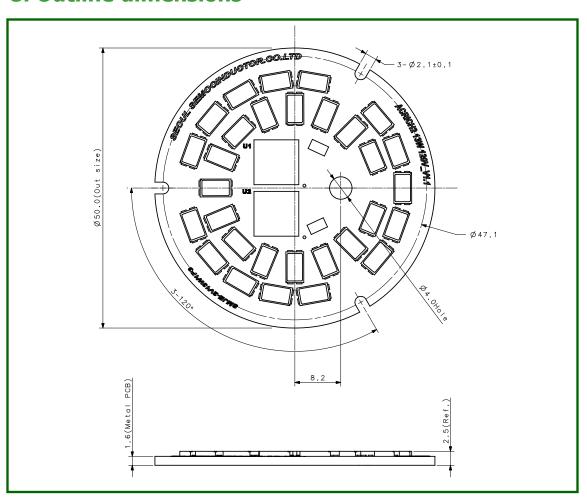
6-1. Neutral White binning structure (3,700K to 4,200K)



Bin code	Х	Υ	Bin code	Х	Υ	Bin code	Х	Y
	0.3736	0.3874		0.3869	0.3958		0.3714	0.3775
	0.3714	0.3775] [0.3842	0.3855	E2	0.3692	0.3677
E0	0.3841	0.3855	E1	0.3970	0.3935		0.3813	0.3751
	0.3869	0.3958		0.4006	0.4044		0.3842	0.3855
	0.3842	0.3855		0.3692	0.3677		0.3813	0.3751
F0	0.3813	0.3751] _,	0.3670	0.3578	E5	0.3783	0.3646
E3	0.3934	0.3825	E4	0.3783	0.3646		0.3898	0.3716
	0.3970	0.3935]	0.3813	0.3751		0.3934	0.3825

6-1. Cool White binning structure (4,700K to 6,000K)

Bin code	Х	Υ	Bin code	Х	Υ	Bin code	Х	Υ
	0.3207	0.3462		0.3292	0.3539		0.3212	0.3389
DO.	0.3212	0.3389] ,	0.3293	0.3461] _{D2}	0.3217	0.3316
В0	0.3293	0.3461	B1	0.3373	0.3534	B2	0.3293	0.3384
	0.3292	0.3539		0.3376	0.3616		0.3293	0.3461
	0.3293	0.3461		0.3217	0.3316		0.3293	0.3384
Da	0.3293	0.3384] ,	0.3222	0.3243	D.	0.3294	0.3306
В3	0.3369	0.3451	B4	0.3294	0.3306	B5	0.3366	0.3369
	0.3373	0.3534		0.3293	0.3384		0.3369	0.3451
	0.3376	0.3616		0.3463	0.3687	C2	0.3373	0.3534
00	0.3373	0.3534]	0.3456	0.3601		0.3369	0.3451
C0	0.3456	0.3601	C1	0.3539	0.3669		0.3448	0.3514
	0.3463	0.3687		0.3552	0.3760		0.3456	0.3601
	0.3456	0.3601		0.3369	0.3451		0.3448	0.3514
00	0.3448	0.3514] ,	0.3366	0.3369]	0.3440	0.3428
C3	0.3526	0.3578	C4	0.3440	0.3428	C5	0.3514	0.3487
	0.3539	0.3669		0.3448	0.3514		0.3526	0.3578

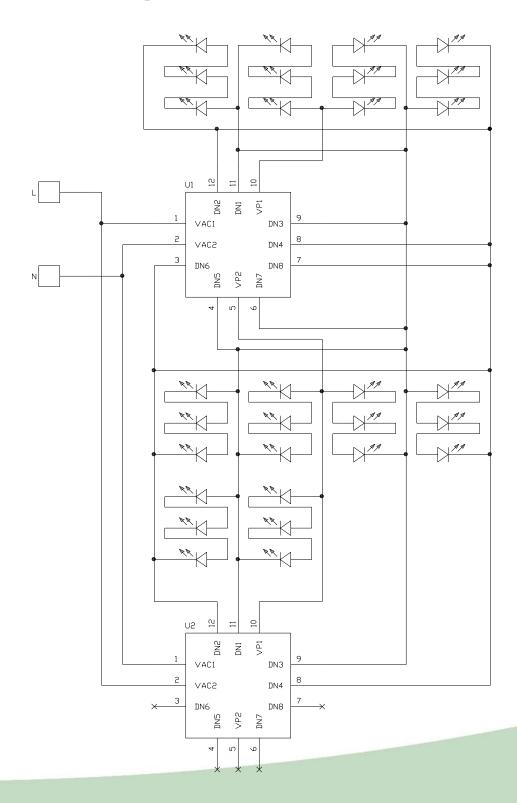


7. Marking

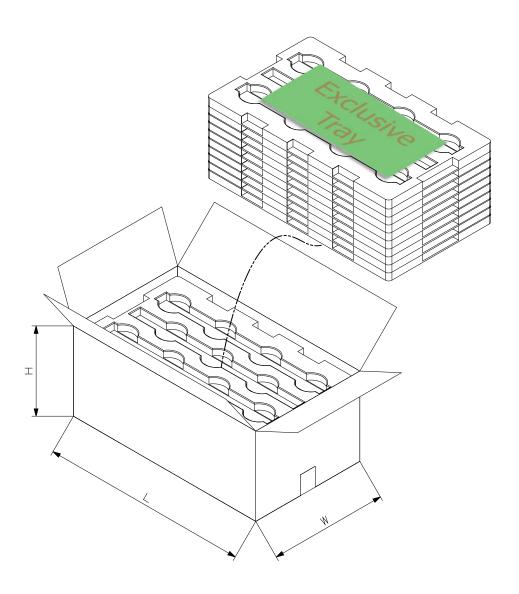
XXXXXX - Year / Month/date / Production date XXXX - LED PKG Flux Rank / Color Bin Rank

8. Outline dimensions

* Notes:


- [1] All dimensions are in millimeters. (Tolerance : ± 0.2)
- [2] Scale: none
- [3] The appearance and specifications of the product may be changed for improvement without notice

9. Circuit Drawing



10. Packing

o 1Box : 50 PCS per tray x Max 8 layer = Max 400 PCSabout 6kg

 \circ Box size(L x W x H) = 590 x 330 x 260

11. Cautions for use

- Please review the Acrich2 Module Application Note for porper protective circuitry usage
- Please note, Acrich products run off of high voltage, therefore caution should be taken when working near Acrich products.
- DO NOT touch any of the circuit board, components or terminals with body or metal while circuit is active.
- Please do not add or change wires while Acrich circuit is active
- Long time exposure to sunlight or UV can cause the lens to discolor.
- Please do not use adhesives to attach the LED that outgas organic vapor.
- Please do not use together with the materials containing Sulfur.
- Please do not assemble in conditions of high moisture and/or oxidizing gas such as CI, H2S,NH3,SO2,NOX,etc.
- Please do not make any modification on module.
- Please be cautious when soldering to board so as not to create a short between different trace patterns.

12. Handling of silicone resin for LEDs

- Acrich series is encapsulated with silicone resin for high optical efficiency.
- Please do not touch the silicone resin area with sharp objects such as pincette(tweezers).
- Finger prints on silicone resin area may affect the performance.
- Please store LEDs in covered containers to prevent dust accumulation as this may affect performance.
- Excessive force more than 3000gf to the silicone lens can result in fatal or permanent damage with LEDs.
- Please do not cover the silicone resin area with any other resins such as epoxy, urethane, etc.

RoHS

13. Handling with regards to static electricity

- The Acrich2 modules use an integrated circuit (IC) which can be damaged when exposed to static electricity. Please handle using equipment that prevents static electricity. Do not touch unless ESD protection is used.
- The Acrich2 modules should also not be installed in end equipment with out ESD protection.

14. Storage before use

- Do not impact or place pressure on this product because even a small amount of pressure can damage the product. The product should also not be placed in high temperatures, high humidity or direct sunlight since the device is sensitive to these conditions.
- (1) When storing devices for a long period of time before usage, please following these guidelines:
 - * The devices should be stored in the anti-static bag that it was shipped in from Seoul-Semiconductor with opening.
 - * If the anti-static bag has been opened, re-seal preventing air and moisture from being present in the bag.

15. Guidelines for properly working with Acrich modules.

- Discharge the lighting system a minimum of 2-3 times prior to working with the module.
- Use only properly rated test equipment and tools for the rated voltage and current of the product being tested.
- It is strongly suggested to wear rubber insulated gloves and rubber bottom shoes.
- Do not wear any conductive items (such as jewelry) which could accidentally contact electric circuits.
- Perform several tests with power off and the lighting system unplugged.
- Faults, lightning, or switching transients can cause voltage surges in excess of the normal ratings.
- Internal component failure can cause excessive voltages.
- Stored or residual electricity in long wire could be hazardous.
- Make sure proper discharge prior to starting work.