
Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

Fair-Rite Product's Catalog Part Data Sheet, 2944778101

Part Number: 2944778101

Broadband Frequencies 10-300 MHz (44 material) Frequency Range:

Description: 44 PC BEAD

Application: Suppression Components

Where Used: **Board Component**

Part Type: PC Beads (Through Hole)

Preferred Part:

Mechanical Specifications

Weight: 2.700 (g)

Part Type Information

Multiple single turn or multi-turn printed circuit EMI suppression beads are available in two Fair-Rite materials. The broadband 44 material and in the high frequency 52 material grade.

- -PC Beads can be supplied with lower component heights 'C'. Also, the wire length 'F' can be modified to specific requirements.
- -Wires are oxygen free high conductivity copper with a lead-free tin coating. Wires on top of the beads are covered with a layer of epoxy.
- -PC Beads are controlled for impedance only. The impedances listed are typical values. Minimum impedance values are specified for the + marked frequencies. The minimum guaranteed impedance is the listed impedance less 20%.
- -The PC Beads in 44 material are measured on the 4193A Vector Impedance Analyzer. The 52 PC Beads are tested for impedance on the 4191A RF Impedance Analyzer.
- -Recommended operating and storage temperature for the PC Beads is -55°C to +125°C.
- -Explanation of Part Numbers: Digits 1&2 = product class, 3&4 = material grade and last digit 1 = standard wire length 2.4 mm (.095") minimum.

Fair-Rite Products Corp. PO Box J.One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

Fair-Rite Product's Catalog Part Data Sheet, 2944778101 Printed: 2010-11-09

Mechanical Specifications

Dim	mm	mm	nominal	inch
		tol	inch	misc.
А	11.20	-0.50	0.430	-
В	5.75	-0.50	0.216	-
С	11.80	Max	0.464	Max
D	2.54	±0.10	0.100	-
Е	2.54	±0.10	0.100	-
F	2.40	Min	0.095	Min
G	0.65	1	-	22 AWG
Н	-	1	-	-
J	-	-	-	-
K	-		-	-

Electrical Specifications

Typical Impedance (Ω)			
10 MHz	115		
25 MHz+	188		
100 MHz+ 288			
250 MHz 305			

Electrical Properties	

Land Patterns

V	W	Х	Υ	Z
-	-	-		-

Winding Information

Turns	Wire	1st Wire	2nd Wire
Tested	Size	Length	Length
-	-	-	-

Reel Information

Tape Width	Pitch	Parts 7 "	Parts 13 "	Parts 14 "
mm	mm	Reel	Reel	Reel
-	-	-	-	-

Package Size

Pkg Size
-
(-)

Connector Plate

# Holes	# Rows
-	-

Legend

+ Test frequency

Preferred parts, the suggested choice for new designs, have shorter lead times and are more readily available.

The column H(Oe) gives for each bead the calculated dc bias field in oersted for 1 turn and 1 ampere direct current. The actual dc H field in the application is this value of H times the actual NI (ampere-turn) product. For the effect of the dc bias on the impedance of the bead material, see figures 18-23 in the application note How to choose Ferrite Components for EMI Suppression.

A ½ turn is defined as a single pass through a hole.

∠I/A - Core Constant

 A_e : Effective Cross-Sectional Area A_I - Inductance Factor $\binom{L}{N^2}$

I e: Effective Path Length

V_e: Effective Core Volume

NI - Value of dc Ampere-turns

N/AWG - Number of Turns/Wire Size for Test Coil

Fair-Rite Product's Catalog Part Data Sheet, 2944778101 Printed: 2010-11-09

Ferrite Material Constants

Thermal Conductivity 10x10⁻³ cal/sec/cm/°C

Coefficient of Linear Expansion 8 - 10x10⁻⁶/°C

Tensile Strength 4.9 kgf/mm²

Compressive Strength 42 kgf/mm²

Young's Modulus 15x10³ kgf/mm²

Specific Gravity $\approx 4.7 \text{ g/cm}^3$

The above quoted properties are typical for Fair-Rite MnZn and NiZn ferrites.

See next page for further material specifications.

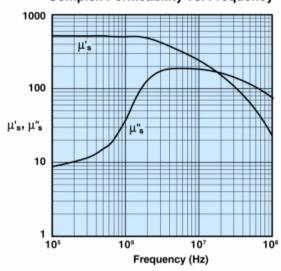
Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

A NiZn ferrite developed to combine a high suppression performance, from 30 MHz to 500 MHz, with a very high dc resistivity.

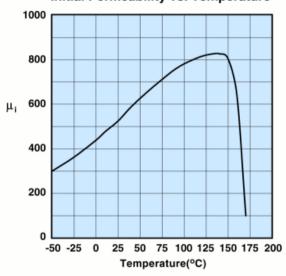
SM beads, PC beads, wound beads, round cable snap-its, and connector EMI suppression plates are all available in 44 material.

Fair-Rite Product's Catalog Part Data Sheet, 2944778101

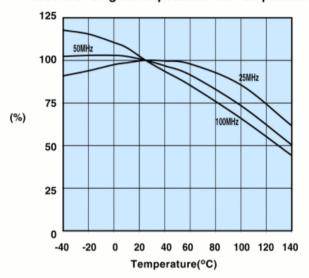
Printed: 2010-11-09



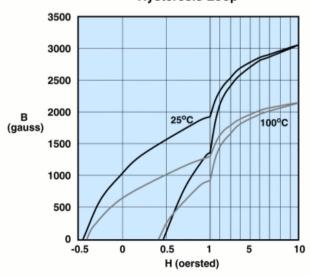
44 Material Characteristics:


Property	Unit	Symbol	Value
Initial Permeability B < 10 gauss		μ_{i}	500
Flux Density	gauss	В	3000
@ Field Strength	oersted	н	10
Residual Flux Density	gauss	B _r	1100
Coercive Force	oersted	H _c	0.45
Loss Factor	10-6	tan δ/μ	125
@ Frequency	MHz		1.0
Temperature Coefficient of Initial Permeability (20 -70°C)	%/°C		0.75
Curie Temperature	°C	T.	>160
Resistivity	Ωcm	ρ	1x10°

Complex Permeability vs. Frequency


Measured on a 17/10/6mm toroid using the HP 4284A and the HP 4291A.

Initial Permeability vs. Temperature

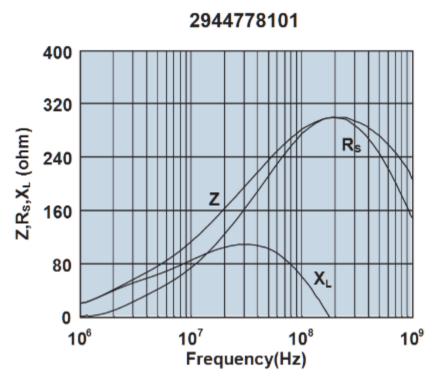

Measured on a 17/10/6mm toroid at 100kHz.

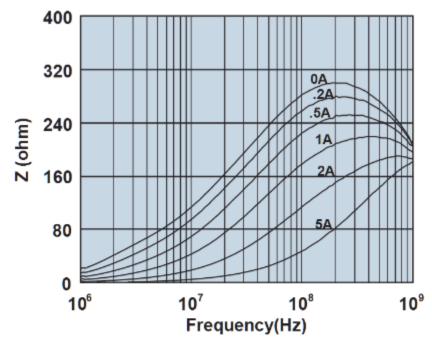
Percent of Original Impedance vs. Temperature

Measured on a 2644000301 using the HP4291A.

Hysteresis Loop

Measured on a 17/10/6mm toroid at 10kHz.


Fair-Rite Product's Catalog Part Data Sheet, 2944778101 Printed: 2010-11-09



Impedance, reactance, and resistance vs. frequency.

Impedance vs. frequency with dc bias.