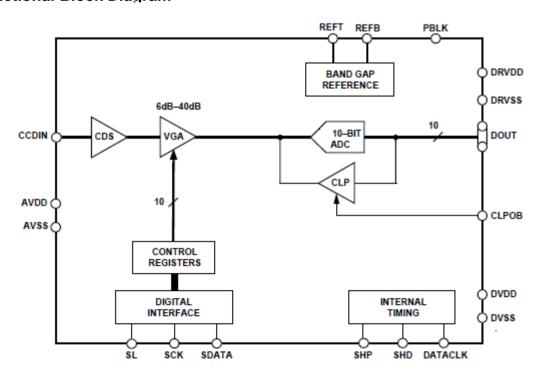


Complete 10-bit, 25MHz CCD Signal Processor

General Description

The Ai9943 is a complete analog signal processor for CCD applications. It features a 25 MHz single-channel architecture designed to sample and condition the outputs of interlaced and progressive scan area CCD arrays. The signal chain for the Ai9943 consists of a correlated double sampler (CDS), a digitally controlled variable gain amplifier (VGA), and a black level clamp. The Ai9943 offers 10-bit ADC resolution.

The internal registers are programmed through a 3-wire serial digital interface. Programmable features include gain adjustment, black level adjustment, input clock polarity, and powerdown modes. The Ai9943 operates from a single 3 V power supply and typically dissipates 79 mW.


Features

- 25 MSPS correlated double sampler (CDS)
- 6 dB to 40 dB 10-bit variable gain amplifier (VGA)
- Low noise optical black clamp circuit
- Preblanking function
- 10-bit, 25 MSPS A/D converter
- No missing codes guaranteed
- 3-wire serial digital interface
- 3 V single-supply operation
- Space-saving 32-lead, 5 mm × 5 mm QFN package

Applications

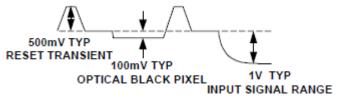
- Digital still cameras
- Digital video camcorders
- PC cameras
- Portable CCD imaging devices
- CCTV cameras

Functional Block Diagram

General Specifications $(T_{MIN} \text{ to } T_{MAX}, \text{ AVDD} = \text{DVDD} = \text{DRVDD} = 3 \text{ V, } f_{SAMP} = 25 \text{ MHz, unless otherwise noted})$

	Davamatar		l lm:t		
	Parameter	Min	Тур	Max	Unit
Temperature	Operating	-20		+85	°C
Range	Storage	-65		+150	°C
Power Supply Vol	tage (AVDD, DVDD, DRVDD)	2.7		3.6	V
Power	Normal Operation		79		mW
Consumption	Power-down Mode		150		μW
Maximum Clock R	Maximum Clock Rate				MHz

Digital Specifications (DRVDD = DVDD = 2.7 V, $C_L = 20 \text{ pF}$, unless otherwise noted.)


Parameter		Symbol		11:0:4		
	Parameter	Symbol	Min	Unit		
	High Level Input Voltage	V _{IH}	2.1			V
l a sia	Low Level Input Voltage	V _{IL}			0.6	V
Logic Inputs	High Level Input Current	I _{IH}		10		μA
Inputs	Low Level Input Current	I _{IL}		10		μA
	Input Capacitance	C _{IN}		10		pF
Logic	High Level Output Voltage I _{OH} = 2 mA	V _{OH}	2.2			V
Outputs	Low Level Output Voltage I _{OL} = 2 mA	V _{OL}			0.5	V

System Specifications

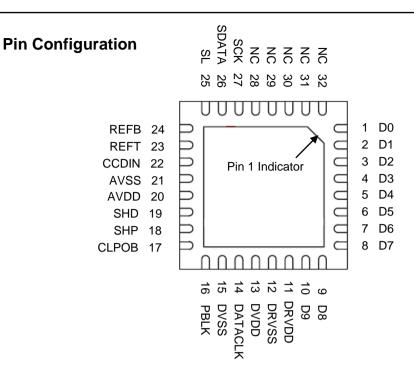
(T_{MIN} to T_{MAX}, AVDD = DVDD = DRVDD = 3 V, fSAMP = 25 MHz, unless otherwise noted)

Parameter		Value			Unit	Conditions	
	Parameter	Min	Тур	Max	Unit	Conditions	
CDS							
Maximum Input Range before Saturation (*1)			1.0		Vp-p		
Allowable CC	D Reset Transient		500		mV	See input waveform in footnote	
Maximum CC	D Black Pixel Amplitude		100		mV		
Variable Gain	Amplifier (VGA)						
Gain Control	Resolution		1024		steps		
Gain Monotor	nicity		Gua	ranteed			
Gain Range	Minimum gain		5.3		dB	See "Variable Gain Amplifier" section for VGA gain equation and the VGA	
	Maximum gain	40	41.5		dB	gain curve.	
Black Level C	lamp						
Clamp Level F	Resolution		256		steps		
Claren Lavel	Minimum clamp level		0		LSB	Management at ADC systems	
Clamp Level	Maximum clamp level		63.75		LSB	Measured at ADC output	
A/D Converter							
Resolution		10			Bits		
Differential No	onlinearity (DNL)		±0.3		LSB		
No Missing C	odes	Guaranteed					
Data Output 0	Coding		Straig	ht binaı	ry		
Full Scale Inp	ut Voltage		2.0		V		
Voltage Refer	ence						
Reference To	p Voltage (REFT)		2.0		V		
Reference Bo	ttom Voltage (REFB)		1.0		V		
System Perfo	rmance					Specifications include entire signal chain.	
	Low gain (VGA code = 0)		5.3		dB		
Gain Range Maximum gain (VGA code = 1023)		40	41.5		dB		
Gain Accuracy			±1		dB		
Peak Nonlinearity 500 mV Input Signal			0.1		%	12 dB gain applied	
Total Output Noise			0.3		LSB rms	AC grounded input, 6dB gain applied	
Power Supply	Rejection (PSR)		50		dB	Measured with step change on supply	

(*1): Input signal characteristics defined as follows:

Timing Specifications

(CL = 20 pF, $f_{SAMP} = 25 \text{ MHz}$. See CCD-mode timing in the section "CCD-mode Timing")


Dovernator	Cyronia al		Value			
Parameter	Symbol	Min	Тур	Max	Unit	
Sample Clocks						
DATACLK, SHP, SHD Clock Period	t _{CONV}	40			ns	
DATACLK High / Low Pulse Width	t _{ADC}	16	20		ns	
SHP Pulse Width	t _{SHP}		10		ns	
SHD Pulse Width	t _{SHD}		10		ns	
CLPOB Pulse Width (*1)	t _{COB}	2	20		Pixels	
SHP Rising Edge to SHD Falling Edge	t _{S1}		10		ns	
SHP Rising Edge to SHD Rising Edge	t _{S2}	16	20		ns	
Internal Clock Delay	t _{ID}		3.0		ns	
Data Outputs						
Output Delay	t _{OD}		9.5		ns	
Pipeline Delay			9		Cycles	
Serial Interface						
Maximum SCK Frequency	t _{SCLK}	10			MHz	
SL to SCK Setup Time	t _{LS}	10			ns	
SCK to SL Hold Time	t _{LH}	10			ns	
SDATA Valid to SCK Rising Edge Setup	t _{DS}	10			ns	
SCK Falling Edge to SDATA Valid Hold	t _{DH}	10			ns	

^{(*1):} Minimum CLPOB pulse width is for functional operation only. Wider pulses are recommended to obtain low noise clamp performance.

Absolute Maximum Ratings

Poro	motor (with respect to)		Rating			
Fala	meter (with respect to)	Min Typ Max			Unit	
	AVDD (AVSS)	- 0.3		+ 3.9	V	
Supply Voltage	DVDD (DVSS)	- 0.3		+ 3.9	V	
. ona.go	DRVDD (DRVSS)	- 0.3		+ 3.9	V	
	SHD, SHP, DATACLK (DVSS)	- 0.3		DVDD + 0.3	V	
Input Valtage	CLPOB, PBLK (DVSS)	- 0.3		DVDD + 0.3	V	
Input Voltage	SCK, SL, SDATA (DVSS)	- 0.3		DVDD + 0.3	V	
	CCDIN (AVSS)	- 0.3		AVDD + 0.3	V	
Output	D0 - D9 (DRVSS)	- 0.3		DRVDD + 0.3	V	
Voltage	REFT, REFTB (AVSS)	- 0.3		AVDD + 0.3	V	

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

 $QFNWB5 \times 5-32L$ (Bottom View)

Pin Description

No.	Symbol	Type (*1)	Description
1 to 10	D0 to D9	DO	Digital Data Outputs.
11	DRVDD	Р	Digital Output Driver Supply
12	DRVSS	Р	Digital Output Driver Ground.
13	DVDD	Р	Digital Supply
14	DATACLK	DI	Digital Data Output Latch Clock
15	DVSS	Р	Digital Supply Ground
16	PBLK	DI	Preblanking Clock Input
17	CLPOB	DI	Black Level Clamp Clock Input
18	SHP	DI	CDS Sampling Clock for CCD Reference Level
19	SHD	DI	CDS Sampling Clock for CCD Data Level
20	AVDD	Р	Analog Supply
21	AVSS	Р	Analog Ground
22	CCDIN	Al	Analog Input for CCD Signal
23	REFT	AO	A/D Converter Top Reference Voltage Decoupling
24	REFB	AO	A/D Converter Bottom Reference Voltage Decoupling
25	SL	DI	Serial Digital Interface Load Pulse
26	SDATA	DI	Serial Digital Interface Data Input
27	SCK	DI	Serial Digital Interface Clock Input
28 to 30	NC	NC	Internally pulled down. Float or connect to GND
31 to 32	NC	NC	Internally not connected

^(*1) Type: AI = analog input, AO = analog output, DI = digital input, DO = digital output, P = power, and NC = no connect

Terminology

Differential Nonlinearity (DNL)

An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value. Therefore every code must have a finite width. No missing codes guaranteed to 10-bit resolution indicates that all 1024 codes, respectively, must be present over all operating conditions.

Peak Nonlinearity

Peak nonlinearity, a full-signal chain specification, refers to the peak deviation of the output of the Ai9943 from a true straight line. The point used as zero scale occurs 1/2 LSB before the first code transition. Positive full scale is defined as a level 1 1/2 LSB beyond the last code transition. The deviation is measured from the middle of each particular output code to the true straight line. The error is then expressed as a percentage of the 2 V ADC full-scale signal. The input signal is always appropriately gained up to fill the ADC's full-scale range.

Total Output Noise

The rms output noise is measured using histogram techniques. The standard deviation of the ADC output codes is calculated in LSB and represents the rms noise level of the total signal chain at the specified gain setting. The output noise can be converted to an equivalent voltage, using the relationship

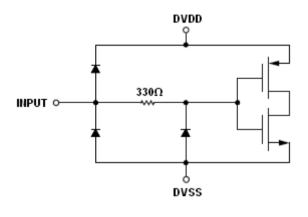
1 LSB = $(ADC Full Scale / 2^N codes)$

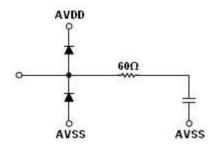
where *N* is the bit resolution of the ADC. For example, 1 LSB of the Ai9943 is 1.95 mV

Power Supply Rejection (PSR)

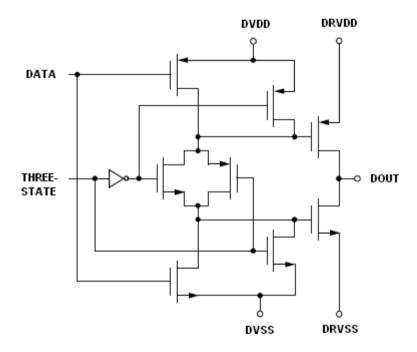
The PSR is measured with a step change applied to the supply pins. This represents a very high frequency disturbance on the Ai9943's power supply. The PSR specification is calculated from the change in the data outputs for a given step change in the supply voltage.

Internal Delay for SHP/SHD

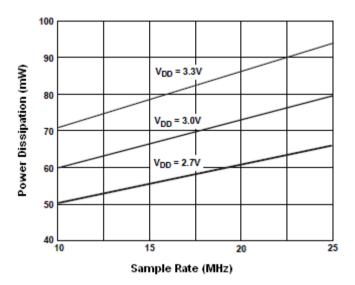

The internal delay (also called aperture delay) is the time delay that occurs from the time a sampling edge is applied to the Ai9943 until the actual sample of the input signal is held. Both SHP and SHD sample the input signal during the transition from low to high, so the internal delay is measured from each clock's rising edge to the instant the actual internal sample is taken.


Equivalent Input Circuits

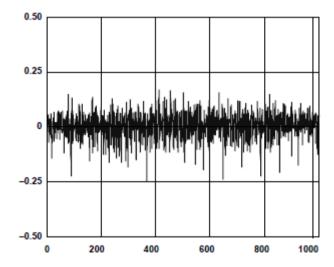
Digital Inputs


—SHP, SHD, DATACLK, CLOB, PBLK, SCK, SL

CCDIN (Pin 22)



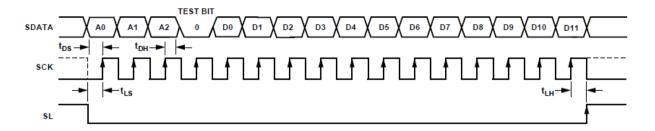
Data outputs



Typical Performance Characteristics

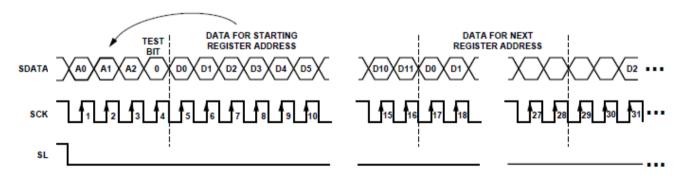
Power Vs Sample Rate

Typical DNL Performance


Internal Register Map

(All register values default to 0x000 at power-up except clamp level, which defaults to 128 decimal, corresponding to a clamp level of 32 LSB.)

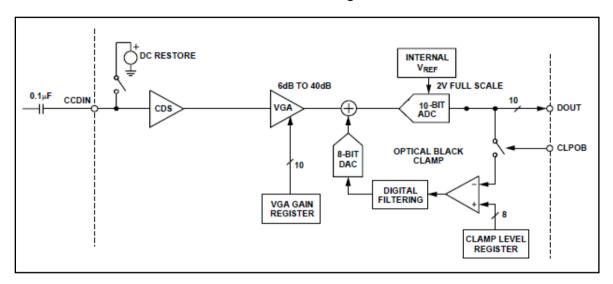
Register	Address Bits		Data Bita	Eunation	
Name	A2	A1	A0	Data Bits	Function
				D0	Software Reset (0 = normal operation, 1 = reset all registers to default).
				D2, D1	Power-Down Modes (00 = normal power, 01 = standby, 10 = total shutdown).
				D3	OB Clamp Disable (0 = clamp on, 1 = clamp off).
Operation	0	0	0	D5, D4	Test Mode. Should always be set to 00.
				D6	PBLK Blanking Level (0 = blank output to zero, 1 = blank to ob clamp level).
				D8, D7	Test Mode 1. Should always be set to 00.
				D11 to D9	Test Mode 2. Should always be set to 000.
				D0	SHP/SHD Input Polarity (0 = active low, 1 = active high).
				D1	DATACLK Input Polarity (0 = active low, 1 = active high).
					D2
				D3	PBLK Input Polarity (0 = active low, 1 = active high).
Control	Control 0 0		1	D4	Three-State Data Outputs (0 = outputs active, 1 = outputs three-stated).
				D5	Data Output Latching (0 = latched by DATACLK, 1 = latch is transparent).
				D6	Data Output Coding (0 = binary output, 1 = gray code output).
				D11 to D7	Test Mode. Should always be set to 00000
Clamp Level	0	1	0	D7 to D0	OB Clamp Level (0 = 0 LSB, 255 = 63.75 LSB)
VGA Gain	0	1	1	D9 to D0	VGA Gain (0 = 6dB, 1023 = 40dB)


Serial Interface

Serial Write Operation

- NOTE: 1. SDATA bits are internally latched on the rising edges of SCK.
 - 2. System update of loaded registers occurs on SL rising edge.
 - 3. All 12 data bits D0-D11 must be written. If the register contains fewer than 12 bits, zeros should be used for undefined bits.
 - 4. Test bit is for internal use only and must be set low.

Continuous Serial Write Operation to All Registers



NOTE: 1. Multiple sequential registers may be loaded continuously.

- 2. The first (LOWEST address) register address is written, followed by multiple 12-bit data-words.
- 3. The address automatically increments with each 12-bit data-word. (All 12 bits must be written.)
- 4. SL is held LOW until the last desired register has been loaded.
- 5. New data is updated at the next SL rising edge.

Circuit Description and Operation

CCD Mode Block Diagram

The Ai9943 signal processing chain is shown in the above "CCD Mode Block Diagram". Each processing step is essential for achieving a high quality image from the raw CCD pixel data.

DC Restore

To reduce the large dc offset of the CCD output signal, a dc restore circuit is used with an external 0.1 μ F series coupling capacitor. This restores the dc level of the CCD signal to approximately 1.5 V, which is compatible with the 3 V single supply of the Ai9943.

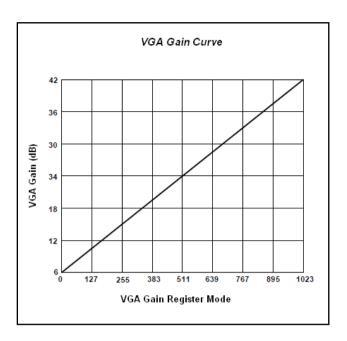
Correlated Double Sampler

The CDS circuit samples each CCD pixel twice to extract video information and reject low frequency noise. The figure "CCD Mode Timing" illustrates how the two CDS clocks, SHP and SHD, are used, respectively, to sample the reference level and data level of the CCD signal. The CCD signal is sampled on the rising edges of SHP and SHD. Placement of these two clock signals is critical for achieving the best performance from the CCD. An internal SHP/SHD delay (t_{ID}) of 3 ns is caused by internal propagation delays.

Optical Black Clamp

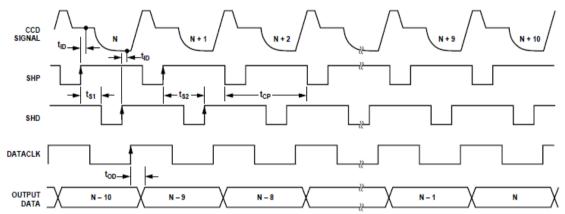
The optical black clamp loop is used to remove residual offsets in the signal chain and to track low frequency variations in the CCD's black level. During the optical black (shielded) pixel interval on each line, the ADC output is compared with the fixed black level reference selected by the user in the clamp level register. The resulting error signal is filtered to reduce noise, and the correction value is applied to the ADC input through a D/A converter. Normally, the optical black clamp loop is turned on once per horizontal line, but this loop can be updated more slowly to suit a particular application. If external digital clamping is used during the post processing, the optical black clamping for the Ai9943 may be disabled using Bit D3 in the operation register. Refer to the sections "Serial Interface" and "Internal Register Map".

When the loop is disabled, the clamp level register may still be used to provide programmable offset adjustment. Horizontal timing is shown in the "Typical CCD Mode Line Clamp Timing" below. The CLPOB pulse should be placed during the CCD's optical black pixels. It is recommended that the CLPOB pulse be used during valid CCD dark pixels. The CLPOB pulse should be a minimum of 20 pixels wide to minimize clamp noise. Shorter pulse widths may be used, but clamp noise may increase and the loop's ability to track low frequency variations in the black level is reduced.


A/D Converter

The ADC uses a 2 V input range. Better noise performance results from using a larger ADC full-scale range. The ADC uses a pipelined architecture with a 2 V full-scale input for low noise performance.

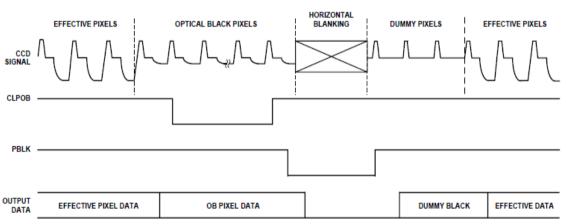
Variable Gain Amplifier


The VGA stage provides a gain range of 6 dB to 40 dB, programmable with 10-bit resolution through the serial digital interface. The minimum gain of 6 dB is needed to match a 1 V input signal with the ADC full-scale range of 2V. A plot of the VGA gain curve is shown on the right.

 $VGA \ Gain \ (dB) = (VGA \ Code \times 0.035dB) +5.3 \ dB$

CCD Mode Timing

CCD Mode Timing



NOTES

1. RECOMMENDED PLACEMENT FOR DATACLK RISING EDGE IS BETWEEN THE SHD RISING EDGE AND NEXT SHP FALLING EDGE.

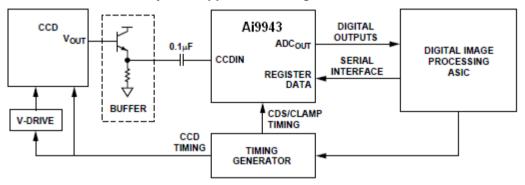
2. CCD SIGNAL IS SAMPLED AT SHP AND SHD RISING EDGES.

Typical CCD Mode Line Clamp Timing

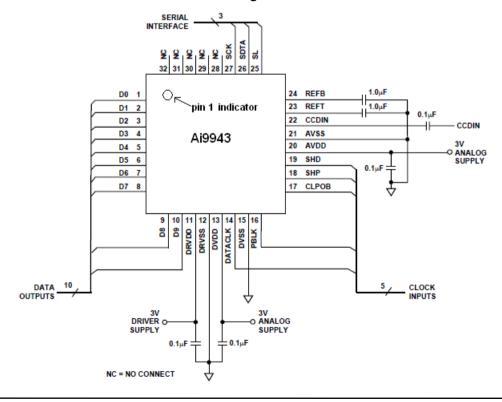
NOTES

1. CLPOB WILL OVERWRITE PBLK. PBLK WILL NOT AFFECT CLAMP OPERATION IF OVERLAPPING WITH CLPOB.

2. PBLK SIGNAL IS OPTIONAL.


3. DIGITAL OUTPUT DATA WILL BE ALL ZEROS DURING PBLK. OUTPUT DATA LATENCY IS NINE DATACLK CYCLES.

Applications Information


The Ai9943 is complete analog front end (AFE) products for digital still camera and camcorder applications. As shown in the "CCD Mode Block Diagram", the CCD image (pixel) data is buffered and sent to the Ai9943 analog input through a series input capacitor. The Ai9943 performs the dc restoration, CDS, gain adjustment, black level correction, and analog-to-digital conversion. The Ai9943's digital

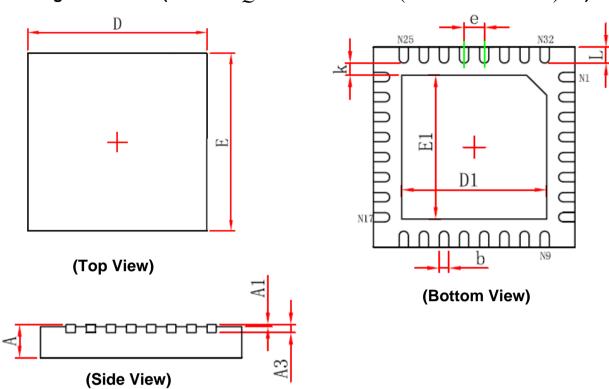
output data is then processed by the image processing ASIC. The internal registers of the Ai9943—used to control gain, offset level, and other functions—are programmed by the ASIC or microprocessor through a 3-wire serial digital interface. A system timing generator provides the clock signals for both the CCD and the AFE.

System Applications Diagram

Recommended Circuit Configuration for CCD Mode

Internal Power-on Reset Circuitry

After power-on, the Ai9943 automatically resets all internal registers and performs internal calibration procedures. This takes approximately 1 ms to complete. During this time, normal clock signals and serial write operations may occur. However, serial register writes are ignored until the internal reset operation is completed.


Grounding and Decoupling Recommendations

As shown in the "Recommended Circuit Configuration for CCD Mode" on the previous page, a single ground plane is recommended for the Ai9943. This ground plane should be as continuous as possible. This ensures that all analog decoupling capacitors provide the lowest possible impedance path between the power and bypass pins and their respective ground pins. All decoupling capacitors should be located as close

as possible to the package pins. A single clean power supply is recommended for the Ai9943, but a separate digital driver supply may be used for DRVDD (Pin 11). DRVDD should always be decoupled to DRVSS (Pin 12), which should be connected to the analog ground plane. Advantages of using a separate digital driver supply include using a lower voltage (2.7 V) to match levels with a 2.7 V ASIC, and reducing digital power dissipation and potential noise coupling. If the digital outputs must drive a load larger than 20 pF, buffering is the recommended method to reduce digital code transition noise. Alternatively, placing series resistors close to the digital output pins may also help reduce noise.

Note: The exposed pad on the bottom of the Ai9943 should be soldered to the GND plane of the printed circuit board.

Package Dimension ($Ai9943: \ QFNWB5 \times 5 - 32L(P0.50T0.75/0.85)$)

SYMBOL	DIMENSIONS IN	MILIMETERS	DIMENSIONS IN INCHES			
STIVIBUL	MIN	MAX	MIN	MAX		
А	0.700 / 0.800	0.800 / 0.900	0.028 / 0.031	0.031 / 0.035		
A1	0.000	0.050	0.000	0.002		
A3	0.203	BREF	0.008	REF		
D	4.924	5.076	0.194	0.200		
E	4.924	5.076	0.194	0.200		
D1	3.300	3.500	0.130	0.138		
E1	3.300	3.500	0.130	0.138		
k	0.200	OMIN	0.008	BMIN		
b	0.180	0.300	0.007	0.012		
е	0.500	TYP	0.020	TYP		
L	0.324	0.476	0.013	0.019		