

LESD8D3.3T5G ESD PROTECTION DIODE

Discription

The LESD8D3.3T5G is designed to protect voltage sensitive components from ESD. Excellent clamping capability, low leakage, and fast response time provide best in class protection on designs that are exposed to ESD. Because of its small size, it is suited for use in cellular phones, MP3 players, digital cameras and many other portable applications where board space is at a premium.

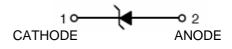
Applications

- I Cellular phones audio
- I MP3 players
- I Digital cameras
- I Portable applicationss
- I mobile telephone

Features

- Small Body Outline Dimensions: 0.039" x 0.024"(1.0 mm x 0.60 mm)
- Low Body Height: 0.020" (0.50 mm)
- Stand-off Voltage: 3.3 V 12 V
- Low Leakage
- Response Time is Typically < 1 ns
- ESD Rating of Class 3 (> 16 kV) per Human Body Model
- IEC61000-4-2 Level 4 ESD Protection
- These are Pb-Free Devices
- We declare that the material of product compliance with RoHS requirements.

MAXIMUM RATINGS

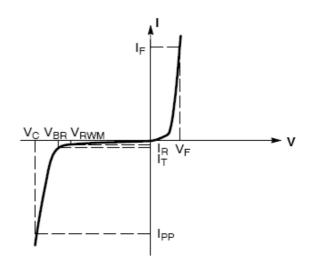

Rating	Symbol	Value	Unit
IEC 61000-4-2 (ESD) Air Contact Contact discharge		±15 ±8	kV kV
ESD Voltage Per Human Body Model		16	kV
Total Power Dissipation on FR-5 Board (Note 1)	PD	150	mW
@ T _A =25°C			
Junction and Storage Temperature Range	TJ,TSTG	-55 to 150	°C
Lead Solder Temperature – Maximum (10	TL	260	°C
Second Duration)			

Stresses exceeding Maximum Ratings may damage the device. Maximum Rating are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. FR-5 = 1.0*0.75*0.62 in.

Ordering information

Device	Marking	Shipping
LESD8D3.3T5G	E	10000/Tape&Reel



LESD8D3.3T5G

ELECTRICAL CHARACTERISTICS

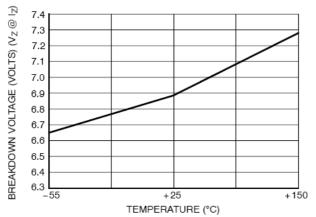
(T_A = 25°C unless otherwise noted)

Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
Vc	Clamping Voltage @ I _{PP}
V _{RWM}	Working Peak Reverse Voltage
I _R	Maximum Reverse Leakage Current @ V _{RWM}
V _{BR}	Breakdown Voltage @ I _T
Ι _Τ	Test Current
١ _F	Forward Current
V _F	Forward Voltage @ I _F
P _{pk}	Peak Power Dissipation
С	Max. Capacitance @V _R = 0 and f = 1 MHz

Uni-Directional TVS

ELECTRICAL CHARACTERISTICS (T _A =25 °C unless otherwise noted, VF=0.9V Max. @ IF=10Ma for all types)								
Device	V _{RWM}	I _R	V_{BR}	Ι _Τ	I _{PP}	Vc	Р _{РК}	С
	(V)	(µA)	(V)	(mA)	(A)	(V)	(W)	(pF)
		@	@ I _T			@ Max I_{PP}	(8*20 µs)	
		V _{RWM}	(Note 2)		(Note 3)	(Note 3)		
	Max	Max	Min		Max	Max	Тур	Тур
LESD8D3.3T5G	3.3	2.5	5.0	1.0	9.8	10.4	102	80
LESD8D5.0T5G	5.0	1.0	6.2	1.0	8.7	12.3	107	65
LESD8D12T5G	12	1.0	13.3	1.0	5.9	23.7	140	30

Other voltage available upon request.


2. V_{BR} is measured with a pulse test current IT at an ambient temperature of $25\,^\circ\!\!\mathbb{C}$

3. Surge current waveform per Figure 3.

LESD8D3.3T5G

TYPICAL CHARACTERISTICS

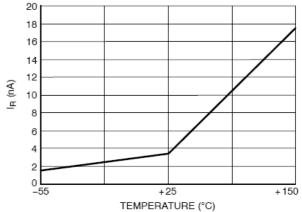


Figure 1. Typical Breakdown Voltage versus Temperature

Fig 2. Typical Leakage Current versus Temperature

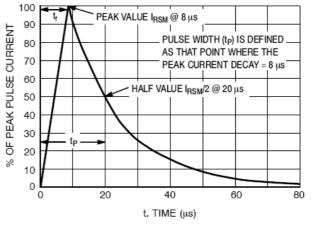
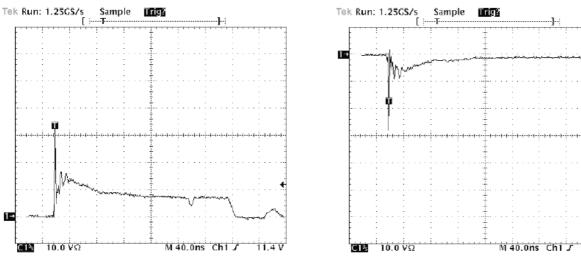
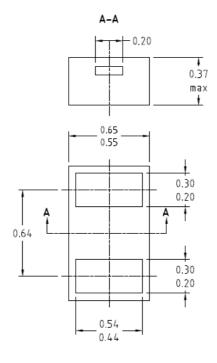
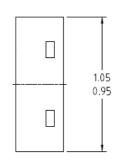
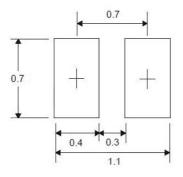



Figure 3. 8*20 µs Pulse Waveform


-8.2 V




SOD882

DIMENSION OUTLINE:

Unit:mm

